www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisableiten einer cos-funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - ableiten einer cos-funktion
ableiten einer cos-funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableiten einer cos-funktion: Frage
Status: (Frage) beantwortet Status 
Datum: 13:14 Sa 11.06.2005
Autor: brini87

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich schreibe am Montag Schulaufgabe und habe ein Problem: Wie leitet man diese Funktion ab: y=x*cos(1/x)
Mein Lehrer hat als Lösungsansatz geschrieben:
=cos(1/x)+x*(cos(1/x))' = cos(1/x)+x*(sin(1/x)*(1/x2))
(das x2 bedeutet x im quadrat! wusste nicht wie man das eintippt *g*)
also, alles was nach dem + kommt versteh ich schon, wegen nachdifferezieren, oder? aber was soll das vor dem +???
Danke schonmal. ciao

        
Bezug
ableiten einer cos-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Sa 11.06.2005
Autor: TranVanLuu

Unter der Escape Taste sollte es bei dir eine Taste mit ° und ^ geben, wenn du die einmal drückst, passiert zunächst nichts, gibtst du danach aber ein was in den Exponenten wandern soll, dann taucht das Zeichen auf und das Folgende wird als Potenz erkannt.

So, nun zu deinem eigentlichen Problem:

x * cos (1/x) ist ja offensichtlich ein Produkt aus "x" und "cos (1/x)", weshalb hier die Produktregel Anwendung finden muss!! Seien dabei a und b zwei Funktionen, die von x abhängen und a', b' ihre Ableitungen, so erhält man durch die Produktregel folgendes:

c = a * b  [mm] \Rightarrow [/mm] c' = a' * b + a * b'

Wenn du jetzt a mit x identifizierst und b mit cos(1/x), dann siehst du, dass wir hierzu kommen:

c = x cos(1/x)  [mm] \Rightarrow [/mm] c' = (x)' * cos(1/x)+ x*(cos(1/x))'

(x)' ist aber nicht anderes als 1, also ergibt sich:

c' = cos(1/x) + x * (cos(1/x))'

Ich hoffe, dass das so nachvollziehbar war!



Den Begriff nachdifferenzieren habe ich erst einmal gehört, aber ich glaube schon, das genau das dort gemacht wurde. Da es sich hier ja um eine Verkettung handelt, muss man noch zusätzlich die Kettenregel anwenden. Wenn du das damit meintest, dann liegst du richtig.

Viel Erfolg!

Gruß Tran

Bezug
        
Bezug
ableiten einer cos-funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 Sa 11.06.2005
Autor: brini87

danke. jetzt habe ichs verstanden. die produktregel habe ich völlig vergessen... danke auch fürs erklären, wie man den exponenten hochstellt!!!
nochmals danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]