www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenabstandsberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - abstandsberechnung
abstandsberechnung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstandsberechnung: "Frage"
Status: (Frage) beantwortet Status 
Datum: 16:17 So 11.02.2007
Autor: baracus88

Aufgabe
gegeben sind die ebene e: (1/-2/2)*x=3 und die gerade [mm] g:(11/-15/8)+\lambda(4/-5/2). [/mm] bestimme alle punkte p, die auf g liegen und von e den abstand 6 haben.

hallo, ich verzweifle total an dieser aufgabe. ich finde einfach keine ansatzmöglichkeit. vll mit hessischer normalenformel???

        
Bezug
abstandsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 11.02.2007
Autor: XPatrickX


> gegeben sind die ebene e: (1/-2/2)*x=3 und die gerade
> [mm]g:(11/-15/8)+\lambda(4/-5/2).[/mm] bestimme alle punkte p, die
> auf g liegen und von e den abstand 6 haben.
>  hallo, ich verzweifle total an dieser aufgabe. ich finde
> einfach keine ansatzmöglichkeit. vll mit hessischer
> normalenformel???  

Hallo,

ja Hess'sche Normalenform ist schon ein richtiger Ansatz. Dann dort die Punkte der Gerade einsetzen: [mm] (11+4\lambda [/mm] | [mm] -15-5\lambda [/mm] | [mm] 8+2\lambda) [/mm] und gleich [mm] \pm [/mm] 6 setzen. Dann solltest du eine Gleichung bekommen in der nur noch [mm] \lambda [/mm] unbekannt ist. Dieses kannst du dann berechnen.

Gruß Patrick


Bezug
                
Bezug
abstandsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 So 11.02.2007
Autor: baracus88

1/3 * [mm] |18\lambda+54-3|= [/mm] +-6
stimmt die gleichung soweit?
schonmal vielen dank für die schnelle antwort!

Bezug
                        
Bezug
abstandsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 11.02.2007
Autor: XPatrickX


> 1/3 * [mm]|18\lambda+[/mm]57[mm]-3|=[/mm] +-6
>  stimmt die gleichung soweit?

Ein kleiner Fehler, meiner Meinung nach. Siehe rot.

>  schonmal vielen dank für die schnelle antwort!


Bezug
                                
Bezug
abstandsberechnung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:59 Mo 12.02.2007
Autor: baracus88

bestimme denjenigen punkt q aus der ebene, der vom koordinatenursprung minimalen abstand hat.

bestimme denjenigen punkt r von der geraden, der vom koordinatenursprung minimalen abstand hat.

kann man das auch mit der hessischen normalenform berechnen???

Bezug
                                        
Bezug
abstandsberechnung: der erste Teil
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 12.02.2007
Autor: XPatrickX


> bestimme denjenigen punkt q aus der ebene, der vom
> koordinatenursprung minimalen abstand hat.
>  

Bestimme eine Gerade, die durch den Ursprung geht und rechtwinklig auf die Ebene trifft. (Tipp: (0/0/0) als Stützvektor und den Normalenvektor der Ebene als Richtungsvektor). Anschließend den Schnittpunkt der Gerade mit der Ebene berechnen. Das ist dann der Punkt Q mit dem kürzesten Abstand.

Gruß Patrick

> bestimme denjenigen punkt r von der geraden, der vom
> koordinatenursprung minimalen abstand hat.
>  
> kann man das auch mit der hessischen normalenform
> berechnen???


Bezug
                                        
Bezug
abstandsberechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 14.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]