www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreabzählbar,überabzählbar,endl.d
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - abzählbar,überabzählbar,endl.d
abzählbar,überabzählbar,endl.d < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abzählbar,überabzählbar,endl.d: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 So 07.10.2012
Autor: SamuraiApocalypse

Aufgabe
a)
Es sei S eine endliche Menge, die nur endliche Mengen als Elemente enthält. Zeige, dass [mm] $\bigcup$S [/mm] endlich ist.

b)
Gibt es eine endliche Menge S, für die gilt, dass [mm] $\bigcup$S [/mm] überabzählbar ist?

c)
Gibt es eine überabzählbare Menge A und eine abzählbare Menge [mm] B$\subseteq$A, [/mm] so dass [mm] A\B [/mm] abzählbar ist?


Nun wie schon so oft, weiss ich bei solchen Aufgaben nie wie ich beginnen soll. Ich schaue mir immer die Definitionen an, aber ich kann nie etwas schlaues daraus gewinnen. Darum wäre ich um jeden Denkanstoss von euch dankbar.

SA

        
Bezug
abzählbar,überabzählbar,endl.d: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 So 07.10.2012
Autor: Schadowmaster

moin,

> a)
> Es sei S eine endliche Menge, die nur endliche Mengen als
> Elemente enthält. Zeige, dass [mm]\bigcup[/mm]S endlich ist.
>  

Sei $n = |S|$.
Da $n$ endlich ist, kannst du eine Induktion nach $n$ machen.


> b)
>  Gibt es eine endliche Menge S, für die gilt, dass
> [mm]\bigcup[/mm]S überabzählbar ist?

[mm] $\{\IR\}$ [/mm] ?


> c)
>  Gibt es eine überabzählbare Menge A und eine abzählbare
> Menge B[mm]\subseteq[/mm]A, so dass [mm]A\B[/mm] abzählbar ist?

Es ist $B [mm] \cup [/mm] A [mm] \backslash [/mm] B = A$. Was weißt du über die Vereinigung zweier abzählbarer Mengen?

lg

Schadow

Bezug
                
Bezug
abzählbar,überabzählbar,endl.d: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 So 07.10.2012
Autor: SamuraiApocalypse


> moin,
>  
> > a)
> > Es sei S eine endliche Menge, die nur endliche Mengen als
> > Elemente enthält. Zeige, dass [mm]\bigcup[/mm]S endlich ist.
>  >  
>
> Sei [mm]n = |S|[/mm].
>  Da [mm]n[/mm] endlich ist, kannst du eine Induktion
> nach [mm]n[/mm] machen.

Wie meinst du das genau?

> > b)
>  >  Gibt es eine endliche Menge S, für die gilt, dass
> > [mm]\bigcup[/mm]S überabzählbar ist?
>  
> [mm]\{\IR\}[/mm] ?
>  
>
> > c)
>  >  Gibt es eine überabzählbare Menge A und eine
> abzählbare
> > Menge B[mm]\subseteq[/mm]A, so dass [mm]A\B[/mm] abzählbar ist?
>  
> Es ist [mm]B \cup A \backslash B = A[/mm]. Was weißt du über die
> Vereinigung zweier abzählbarer Mengen?

Diese zwei Aufgaben sind mir nun klar. Danke!

> lg
>  
> Schadow


Bezug
                        
Bezug
abzählbar,überabzählbar,endl.d: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 So 07.10.2012
Autor: Marcel

Hallo,

> > moin,
>  >  
> > > a)
> > > Es sei S eine endliche Menge, die nur endliche Mengen als
> > > Elemente enthält. Zeige, dass [mm]\bigcup[/mm]S endlich ist.
>  >  >  
> >
> > Sei [mm]n = |S|[/mm].
>  >  Da [mm]n[/mm] endlich ist, kannst du eine
> Induktion
> > nach [mm]n[/mm] machen.
>  
> Wie meinst du das genau?

Du machst Induktion über [mm] $n=|S|\,.$ [/mm] Induktionsstart mit [mm] $n=0\,$ [/mm] ist wohl
sinnvoll: Also Induktion über $|S|=n [mm] \in \IN_0\,.$ [/mm]

(Du zeigst also: Ist [mm] $S\,$ [/mm] eine Menge so, dass die Elemente von [mm] $S\,,$ [/mm]
derer an der Zahl [mm] $n\,,$ [/mm] selbst endliche Mengen sind, so ist [mm] $\bigcup [/mm] S$
eine endliche Menge. Kurzgesagt: Endliche Vereinigungen (d.h. eine
Vereinigung von ENDLICH VIELEN Mengen) endlicher Mengen (d.h. jede
der beteiligten Mengen ist selbst endlich, enthält also nur endlich viele
Elemente) sind endlich.

Man kann sich das auch ohne Induktion überlegen, indem man erstmal
annimmt, dass die Mengen, über die man vereinigt, paarweise disjunkt
sind. Dann kann man nämlich die Anzahl der Elemente, die [mm] $\bigcup [/mm] S$
hat, mithilfe einer (endlichen(!)) Summe hinschreiben. Und damit kann
man sich quasi überlegen, was eine obere Schranke für die Anzahl
der Elemente der Vereinigung [mm] $\bigcup [/mm] S$ ist, wenn die beteiligten
Mengen nicht notwendig paarweise disjunkt sind.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]