www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenabzählbar viele offene mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - abzählbar viele offene mengen
abzählbar viele offene mengen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abzählbar viele offene mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Fr 01.05.2009
Autor: MissPocahontas

Aufgabe
Sei (X,d) ein metrischer Raum. Zeigen Sie, dass zu jeder abgeschlossenen Menge A [mm] \subset [/mm] X abzählbar viele offene Mengen Un [mm] \subset [/mm] X (n [mm] \in [/mm] N) existieren, so dass A = [mm] \bigcap_{n \in N}^{} [/mm] Un gilt.

Hallo,
ich habe diese Aufgabe gelöst, bin aber nicht sicher, ob sie so funktioniert. Vielleicht kann jemand von euch mal drüber schauen. Hier also meine Lösung:
A [mm] \subset [/mm] X ist abgeschlossen.
Un := [mm] \bigcup_{n \in N}^{}B [/mm] 1/n (a) diese Vereinigung ist offen, da die Vereinigung von offenen Mengen wieder offen ist.

B 1/n (a) = {x [mm] \in [/mm] X mit d(x,a) < 1/n }
Sei x [mm] \in \bigcap_{n \in N}^{}Un [/mm] --> Für alle n [mm] \in [/mm] N gibt es ein an [mm] \in [/mm] A mit x [mm] \in \bigcup_{n \in N}^{}B [/mm] 1/n (a) , also mit d(x,an) < 1/n.
Daraus folgt aber an konvergiert gegen x. Da A aber abgeschlossen ist, muss gelten : x [mm] \in [/mm] A.

        
Bezug
abzählbar viele offene mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:12 Sa 02.05.2009
Autor: felixf

Hallo!

> Sei (X,d) ein metrischer Raum. Zeigen Sie, dass zu jeder
> abgeschlossenen Menge A [mm]\subset[/mm] X abzählbar viele offene
> Mengen Un [mm]\subset[/mm] X (n [mm]\in[/mm] N) existieren, so dass A =
> [mm]\bigcap_{n \in N}^{}[/mm] Un gilt.
>
>  Hallo,
> ich habe diese Aufgabe gelöst, bin aber nicht sicher, ob
> sie so funktioniert. Vielleicht kann jemand von euch mal
> drüber schauen. Hier also meine Lösung:
>   A [mm]\subset[/mm] X ist abgeschlossen.
>  Un := [mm]\bigcup_{n \in N}^{}B[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1/n (a) diese Vereinigung ist

> offen, da die Vereinigung von offenen Mengen wieder offen
> ist.

Genau.

> B 1/n (a) = {x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

X mit d(x,a) < 1/n }

>  Sei x [mm]\in \bigcap_{n \in N}^{}Un[/mm] --> Für alle n [mm]\in[/mm] N gibt

> es ein an [mm]\in[/mm] A mit x [mm]\in \bigcup_{n \in N}^{}B[/mm] 1/n (a) ,

Das [mm] $\bigcup_{n \in \IN}$ [/mm] soll da nicht stehen, oder? Wenn es da steht macht das nicht wirklich Sinn...

> also mit d(x,an) < 1/n.

Genau.

>  Daraus folgt aber an konvergiert gegen x. Da A aber
> abgeschlossen ist, muss gelten : x [mm]\in[/mm] A.

Genau.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]