adjungierter endom. die 2te < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
hi, ich schon wieder :)
bevor ich zu meinem eigentlichen problem komme, ein paar vorbemerkungen:
im folgenden sei V stets ein unitärer VR und < , > das zugehörige skalarprodukt, also eine positiv definite hermitesche sesquilinierform.
zuerst ein wohl bekannter satz (zwecks formeller präzision):
sei F:V->V linear und [mm] F^{ad} [/mm] (Fad abgekürzt) der dazugehörige andjungierte endomorphismus Fad:V->V, dann gilt:
< v , Fad(w) > = < F(v) , w > für alle v,w [mm] \in [/mm] V
jetzt zum problem, das ich mir überlegt habe:
satz: sei W ein UVR von V und F:V->V linear. sei F(W) [mm] \subseteq [/mm] W, sodass es eine lin. abbildung F|W:W->W w [mm] \mapsto [/mm] F(w) gibt. ausserdem soll auch [mm] F^{ad}(W) \subseteq [/mm] W sein, sodass es eine lin. abbildung [mm] F^{ad}|W:W->W [/mm] w [mm] \mapsto F^{ad}(w) [/mm] gibt. es gilt dann: [mm] F^{ad}|W=(F|W)^{ad}.
[/mm]
der satz ist eigentlich trivial, jedoch habe ich probleme einen formal sauberen beweis aufzuschreiben. hier mein versuch:
sei I:W->W* w [mm] \mapsto [/mm] < ,w>. I ist semi-linear, da < , > im zweiten argument semi-linear ist und bijektiv, da aus I(w)=0 w=0 folgt (denn < , > ist pos. definit) und dimW=dimW*. es gilt für alle w [mm] \in [/mm] W:
I(Fad(w)) =(1)= < ,Fad(w)> =(2)= <F( ),w> =(3)= <F|W( ),w> =(4)= < ,(F|W)ad(w)>
also: Fad(w) =(5)= [mm] I^{-1}(< [/mm] ,(F|W)ad(w)>) =(6)= (F|W)ad(w)
also: Fad|W =(7)= (F|W)ad
wie gesagt wollte ich einen formal sauberen beweis, deshalb begründe ich alle schritte:
1: wegen Fad(w) [mm] \in [/mm] W (nach voraussetzung); man beachte auch, dass man in die leere stelle nur elemente aus W einsetzen darf, da I:W->W*
2: F genügt den bedingungen im satz oben und auch die variablen (W [mm] \subseteq [/mm] V)
3: wie in 1 erwähnt, darf man in die leere stelle nur elemente aus W einsetzen, eben wegen <F( ),w> [mm] \in [/mm] W*
4: nach voraussetzung ist F(W) [mm] \subseteq [/mm] W und deshalb genügt F|W:W->W den bedingungen aus obigen satz (und auch wieder die variablen aus W)
5: I ist semi-isomorph
6: nach definition; er sei an dieser stelle auch mal erwähnt, dass (F|W)ad(w) [mm] \in [/mm] W, denn rein nach definition und wegen F|W:W->W ist (F|W)ad:W->W
7: gilt ja für alle w [mm] \in [/mm] W, also klar
so, jetzt muss ich nur noch wissen, ob mir keine formfehler unterlaufen sind und dass alles richtig ist.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:43 Mi 06.04.2005 | Autor: | calabi-yau |
sollte eigentlich alles stimmen, hab vielleicht etwas voreilig gepostet, ich alter spammer ;)
|
|
|
|