www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraadjunigierte Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - adjunigierte Abbildung
adjunigierte Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

adjunigierte Abbildung: Invertierbarkeit
Status: (Frage) beantwortet Status 
Datum: 13:58 Mo 29.05.2006
Autor: berkes

Aufgabe
Sei $V$ ein Vektorraum mit Skalarprodukt und F ein Endomorphismus von V.
zu zeigen:
Aus [mm] $F^{ad}\circ [/mm] F = [mm] id_V$ [/mm] folgt nicht unbedingt $F [mm] \circ F^{ad} [/mm] = [mm] id_V$ [/mm]
Unter welcher Bedingung folgt dies doch?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich verstehe nicht, wieso aus [mm] $F^{ad}\circ [/mm] F = [mm] id_V$ [/mm] nicht $F [mm] \circ F^{ad} [/mm] = [mm] id_V$ [/mm] folgen kann, denn ist [mm] $F^{ad}\circ [/mm] F = [mm] id_V$ [/mm] dann folgt daraus doch, dass [mm] $F^{ad}=F^{-1}$ [/mm] ist.
Da die Inverse links- und rechtsinvers ist, muss dann auch $F [mm] \circ F^{ad} [/mm] = [mm] id_V$ [/mm] gelten.
Wo liegt denn mein Denkfehler?
Vielen Dank im Voraus.

        
Bezug
adjunigierte Abbildung: Def. Inverse Abb.
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 29.05.2006
Autor: dormant

Hallo!

Eine Abbildung g heißt Invers zu einer Abbildung f:V->W, wenn gilt:

1) [mm] g(f)=id_{V} [/mm] UND
2) [mm] f(g)=id_{W}. [/mm]

Gruß,
dormant

Bezug
                
Bezug
adjunigierte Abbildung: Beispiel?
Status: (Frage) beantwortet Status 
Datum: 15:10 Mo 29.05.2006
Autor: berkes

Na gut, aber wenn ich mir Darstellungsmatrizen ansehe, dann habe ich noch keine gefunden, wo [mm] $F^{ad}\circ F=id_V$ [/mm] gilt, aber nicht [mm] $F\circ F^{ad}=id_V$ [/mm] gilt.
Kann mir vielleicht jemand ein Beispiel nennen, wo das nicht der Fall ist?

Bezug
                        
Bezug
adjunigierte Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Do 01.06.2006
Autor: Galois

Hallo berkes!

> Na gut, aber wenn ich mir Darstellungsmatrizen ansehe, dann
> habe ich noch keine gefunden, wo [mm]F^{ad}\circ F=id_V[/mm] gilt,
> aber nicht [mm]F\circ F^{ad}=id_V[/mm] gilt.

Bei (endlichen) Matrizen bzw. endlichdimensionalen Vektorräumen ist dies ja auch immer der  Fall:

Denn aus [mm]F^{ad}\circ F=id_V[/mm] folgt zunächst die Injektivität von F, aus dieser wegen der Endlichdimensionalität von V die Surjektivität. Daher existiert dann auch das Inverse [mm]F^{-1}[/mm], und es gilt [mm]F^{ad}=F^{ad}\circ F\circ F^{-1}=F^{-1}[/mm], und daher [mm]F\circ F^{ad}=F\circ F^{-1}=id_V[/mm].

Im Unendlichdimensionalen sieht die Sache aber anders aus, da dann aus [mm]F^{ad}\circ F=Id_V[/mm] nicht unbedingt die Surjektivität / Invertierbarkeit von F folgt:

Als Beispiel betrachten wir den Raum [mm]V:=l^2[/mm] der quadratsummierbaren Folgen, d.h. den Vektorraum aller rellen Folgen [mm](a_i)_i[/mm] mit [mm]\sum_{i=1}^\infty a_i^2<+\infty[/mm]. (Man muß beweisen, daß dies tatsächlich ein Vektorraumm ist...)
Auf diesem Raum ist durch [mm]\langle(a_i)_i, (b_i)_i\rangle:=\sum_{i=1}^\infty a_ib_i[/mm] ein Skalarprodukt definiert. (Dies muß man auch noch beweisen...)
Sei nun F der "Rechtsshift"-Operator auf V, also [mm]F(a_1,a_2,a_3,\dots):=(0,a_1,a_2,\dots)[/mm]. Dieser ist injektiv, aber nicht surjektiv. Man sieht leicht, daß die zugehörige adjungierte Abbildung [mm]F^{ad}[/mm] dann der "Linksshift" ist: [mm]F^{ad}(a_1,a_2,a_3,\dots)=(a_2,a_3,a_4,\dots)[/mm]. Offensichtlich gilt nun [mm]F^{ad}\circ F=id_V[/mm], aber [mm]F\circ F^{ad}\neq id_V[/mm].

Grüße,
Galois


[]Bonner Matheforum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]