adjunigierte Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:58 Mo 29.05.2006 | Autor: | berkes |
Aufgabe | Sei $V$ ein Vektorraum mit Skalarprodukt und F ein Endomorphismus von V.
zu zeigen:
Aus [mm] $F^{ad}\circ [/mm] F = [mm] id_V$ [/mm] folgt nicht unbedingt $F [mm] \circ F^{ad} [/mm] = [mm] id_V$
[/mm]
Unter welcher Bedingung folgt dies doch? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich verstehe nicht, wieso aus [mm] $F^{ad}\circ [/mm] F = [mm] id_V$ [/mm] nicht $F [mm] \circ F^{ad} [/mm] = [mm] id_V$ [/mm] folgen kann, denn ist [mm] $F^{ad}\circ [/mm] F = [mm] id_V$ [/mm] dann folgt daraus doch, dass [mm] $F^{ad}=F^{-1}$ [/mm] ist.
Da die Inverse links- und rechtsinvers ist, muss dann auch $F [mm] \circ F^{ad} [/mm] = [mm] id_V$ [/mm] gelten.
Wo liegt denn mein Denkfehler?
Vielen Dank im Voraus.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:54 Mo 29.05.2006 | Autor: | dormant |
Hallo!
Eine Abbildung g heißt Invers zu einer Abbildung f:V->W, wenn gilt:
1) [mm] g(f)=id_{V} [/mm] UND
2) [mm] f(g)=id_{W}.
[/mm]
Gruß,
dormant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:10 Mo 29.05.2006 | Autor: | berkes |
Na gut, aber wenn ich mir Darstellungsmatrizen ansehe, dann habe ich noch keine gefunden, wo [mm] $F^{ad}\circ F=id_V$ [/mm] gilt, aber nicht [mm] $F\circ F^{ad}=id_V$ [/mm] gilt.
Kann mir vielleicht jemand ein Beispiel nennen, wo das nicht der Fall ist?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:26 Do 01.06.2006 | Autor: | Galois |
Hallo berkes!
> Na gut, aber wenn ich mir Darstellungsmatrizen ansehe, dann
> habe ich noch keine gefunden, wo [mm]F^{ad}\circ F=id_V[/mm] gilt,
> aber nicht [mm]F\circ F^{ad}=id_V[/mm] gilt.
Bei (endlichen) Matrizen bzw. endlichdimensionalen Vektorräumen ist dies ja auch immer der Fall:
Denn aus [mm]F^{ad}\circ F=id_V[/mm] folgt zunächst die Injektivität von F, aus dieser wegen der Endlichdimensionalität von V die Surjektivität. Daher existiert dann auch das Inverse [mm]F^{-1}[/mm], und es gilt [mm]F^{ad}=F^{ad}\circ F\circ F^{-1}=F^{-1}[/mm], und daher [mm]F\circ F^{ad}=F\circ F^{-1}=id_V[/mm].
Im Unendlichdimensionalen sieht die Sache aber anders aus, da dann aus [mm]F^{ad}\circ F=Id_V[/mm] nicht unbedingt die Surjektivität / Invertierbarkeit von F folgt:
Als Beispiel betrachten wir den Raum [mm]V:=l^2[/mm] der quadratsummierbaren Folgen, d.h. den Vektorraum aller rellen Folgen [mm](a_i)_i[/mm] mit [mm]\sum_{i=1}^\infty a_i^2<+\infty[/mm]. (Man muß beweisen, daß dies tatsächlich ein Vektorraumm ist...)
Auf diesem Raum ist durch [mm]\langle(a_i)_i, (b_i)_i\rangle:=\sum_{i=1}^\infty a_ib_i[/mm] ein Skalarprodukt definiert. (Dies muß man auch noch beweisen...)
Sei nun F der "Rechtsshift"-Operator auf V, also [mm]F(a_1,a_2,a_3,\dots):=(0,a_1,a_2,\dots)[/mm]. Dieser ist injektiv, aber nicht surjektiv. Man sieht leicht, daß die zugehörige adjungierte Abbildung [mm]F^{ad}[/mm] dann der "Linksshift" ist: [mm]F^{ad}(a_1,a_2,a_3,\dots)=(a_2,a_3,a_4,\dots)[/mm]. Offensichtlich gilt nun [mm]F^{ad}\circ F=id_V[/mm], aber [mm]F\circ F^{ad}\neq id_V[/mm].
Grüße,
Galois
Bonner Matheforum
|
|
|
|