www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenÄhnliche Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Ähnliche Matrizen
Ähnliche Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnliche Matrizen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 12.03.2014
Autor: Babybel73

Hallo zusammen

Brauche eure Hilfe bei folgender Aufgabe:

Man beweise, dass die Matrizen [mm] A=\pmat{ a & 0 \\ 0 & d } [/mm] & [mm] B=\pmat{ a & b \\ 0 & d }, b\not=0 [/mm] genau dann ähnlich sind, wenn [mm] a\not=d. [/mm]

Habe schon eine Weile rumgerechnet...aber komme irgendwie nicht auf ein brauchbares Resultat.

Es ist ja so, dass 2 Matrizen genau dann ähnlich sind, wenn gilt: [mm] A=P*B*P^1 \gdw A*P=P*B^{} [/mm]

Wie aber komme ich nun auf dieses P?




        
Bezug
Ähnliche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Mi 12.03.2014
Autor: MaslanyFanclub

Hallo,

es ist hier nicht notwendig P explizit zu bestimmen.
Zeige, dass für a=d die Matrizen nicht ähnlich sind (Hinrichtung) und das für [mm] $a\neq [/mm] d$ B diagonalisierbar ist.


Bezug
                
Bezug
Ähnliche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Mi 12.03.2014
Autor: Babybel73

Hallo MaslanyFanclub

Vielen Dank für deine Antwort.

Habe nun das Gleichungssystem AP-PB=0 für a=d und für [mm] a\not=d [/mm] gelöst. Und kam so darauf, dass bei a=d P nicht invertierbar ist, somit sind die Matrizen A und B nicht ähnlich. Bei [mm] a\not=d [/mm] kam ein invertierbares P heraus.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]