www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraÄhnlichkeit von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Ähnlichkeit von Matrizen
Ähnlichkeit von Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnlichkeit von Matrizen: Äquivalenzrelation
Status: (Frage) beantwortet Status 
Datum: 22:23 Do 20.09.2007
Autor: elefanti

Hallo,

ich will zeigen, dass durch zwei ähnliche Matrizen A,B [mm] \in \IR^{nxn} [/mm] eine Äquivalenzrelation definiert ist.

Ich würde mich freuen, wenn jemand nachfolgendes korregieren mag ;-)



Reflexivität:
ZZ: [mm] \forall A\in \IR^{nxn}: \exists T\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] A = [mm] T^{-1}AT [/mm]

Sei T die Einheitsmatrix E. Dann gilt:
A = [mm] T^{-1}AT [/mm]



Symmetrie:
ZZ: [mm] \forall A,B\in \IR^{nxn}: \exists S\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] B = [mm] S^{-1}AS [/mm]
=>  [mm] \exists T\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] A = [mm] T^{-1}BT [/mm]

Seien S,T die Einheitsmatrix E. Dann gilt:
B = [mm] S^{-1}AS [/mm]
<=> B = A
<=> A = B
<=> A = [mm] T^{-1}BT [/mm]



Transitivität:
ZZ: [mm] \forall A,B,C\in \IR^{nxn}: \exists S\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] B = [mm] S^{-1}AS \wedge \exists T\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] A = [mm] T^{-1}CT [/mm]
=>  [mm] \exists U\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm]  B = [mm] T^{-1}CT [/mm]

Seien S,T,U die Einheitsmatrix E. Dann gilt:
B = [mm] S^{-1}AS [/mm]
<=> B=A
<=> A=B
<=> A = [mm] T^{-1}CT [/mm]
<=> B = [mm] T^{-1}CT [/mm]



Liebe Grüße
Elefanti

        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Do 20.09.2007
Autor: Bastiane

Hallo elefanti!

> Hallo,
>  
> ich will zeigen, dass durch zwei ähnliche Matrizen A,B [mm]\in \IR^{nxn}[/mm]
> eine Äquivalenzrelation definiert ist.

Du willst also zeigen, dass $A$~$B [mm] \gdw B=S^{-1}AS$ [/mm] für ein entsprechendes S eine Äquivalenzrelation ist.

> Reflexivität:
>  ZZ: [mm]\forall A\in \IR^{nxn}: \exists T\in[/mm] GL(n, [mm]\IR^{nxn}):[/mm]
> A = [mm]T^{-1}AT[/mm]
>
> Sei T die Einheitsmatrix E. Dann gilt:
>  A = [mm]T^{-1}AT[/mm]

[daumenhoch]

> Symmetrie:
>  ZZ: [mm]\forall A,B\in \IR^{nxn}: \exists S\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] B = [mm]S^{-1}AS[/mm]
>  =>  [mm]\exists T\in[/mm] GL(n, [mm]\IR^{nxn}):[/mm] A = [mm]T^{-1}BT[/mm]
>
> Seien S,T die Einheitsmatrix E. Dann gilt:

Das kannst du so nicht machen. Voraussetzung ist ja, dass es ein S gibt, so dass [mm] B=S^{-1}AS, [/mm] und dort steht nirgendwo, dass S die Einheitsmatrix ist. Und das ist normalerweise auch nicht so. Das heißt, du musst für ein allgemeines S ein T finden, so dass dann gilt: [mm] A=T^{-1}BT. [/mm]

Das ist aber auch recht einfach, denn wenn du [mm] T=S^{-1} [/mm] setzt, erhältst du aus der Ausgangsgleichung [mm] B=S^{-1}AS: [/mm]

[mm] B=TAT^{-1} [/mm]

wenn du jetzt von links mit [mm] T^{-1} [/mm] und von rechts mit T multiplizierst, erhältst du: [mm] T^{-1}BT=A, [/mm] also genau das, was du haben willst. :-)

> Transitivität:
>  ZZ: [mm]\forall A,B,C\in \IR^{nxn}: \exists S\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] B = [mm]S^{-1}AS \wedge \exists T\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] A = [mm]T^{-1}CT[/mm]
> =>  [mm]\exists U\in[/mm] GL(n, [mm]\IR^{nxn}):[/mm]  B = [mm]T^{-1}CT[/mm]

>  
> Seien S,T,U die Einheitsmatrix E. Dann gilt:

Hier das gleiche: du darfst nicht voraussetzen, dass S, T und U die Einheitsmatrix sind, sondern musst es allgemein zeigen. Versuchst du es noch einmal?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Ähnlichkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Fr 21.09.2007
Autor: elefanti

Hallo Bastiane,

ersteinmal vielen Dank für die Korrektur!


Zur Symmetrie habe ich nun:
Symmetrie:
ZZ:  [mm] \forall A,B\in \IR^{nxn}: \exists S\in GL(n,\IR^{nxn}): [/mm]  B = [mm] S^{-1}AS [/mm] $
=>   [mm] \exists T\in [/mm]  GL(n, [mm] \IR^{nxn}): [/mm]  A = [mm] T^{-1}BT [/mm]  

Sei [mm] T=S^{-1}. [/mm] Dann gilt:
B = [mm] TAT^{-1} [/mm]
<=> [mm] T^{-1}B [/mm] = [mm] T^{-1}TAT^{-1} [/mm]
<=> [mm] T^{-1}BT [/mm] = [mm] T^{-1}TAT^{-1}T [/mm]
<=> [mm] T^{-1}BT [/mm] = A
<=> [mm] A=T^{-1}BT [/mm]


Ich habe dazu auch noch eine Frage: Warum wählt man [mm] T=S^{-1} [/mm] und nicht T=S?


Aber bei der Transitivität komme ich so leider nicht weiter:
ZZ: [mm] \forall A,B,C\in \IR^{nxn}: \exists S\in [/mm] GL(n, [mm] \IR^{nxn}): [/mm] B =  [mm] S^{-1}AS \wedge \exists T\in GL(n,\IR^{nxn}): [/mm]  A =  [mm] T^{-1}CT [/mm] =>  [mm] \exists U\in [/mm]  GL(n, [mm] \IR^{nxn}): [/mm] B = [mm] T^{-1}CT [/mm]

Angenommen ich wähle ebenfalls [mm] T=S^{-1}. [/mm] Dann erhalte ich:
B =  [mm] S^{-1}AS [/mm]
<=> B =  [mm] TAT^{-1} [/mm]
wegen A =  [mm] T^{-1}CT [/mm] gilt:
<=>  B =  [mm] TT^{-1}CTT^{-1} [/mm]
<=> B = C
und ich will ja auf  B = [mm] T^{-1}CT [/mm] kommen.


Liebe Grüße
Elefanti

Bezug
                        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Fr 21.09.2007
Autor: dormant

Hi!

> Hallo Bastiane,
>  
> ersteinmal vielen Dank für die Korrektur!
>  
>
> Zur Symmetrie habe ich nun:
>  Symmetrie:
>  ZZ:  [mm]\forall A,B\in \IR^{nxn}: \exists S\in GL(n,\IR^{nxn}):[/mm]
>  B = [mm]S^{-1}AS[/mm] $
>   =>   [mm]\exists T\in[/mm]  GL(n, [mm]\IR^{nxn}):[/mm]  A = [mm]T^{-1}BT[/mm]  
>
> Sei [mm]T=S^{-1}.[/mm] Dann gilt:
>  B = [mm]TAT^{-1}[/mm]
>  <=> [mm]T^{-1}B[/mm] = [mm]T^{-1}TAT^{-1}[/mm]

>  <=> [mm]T^{-1}BT[/mm] = [mm]T^{-1}TAT^{-1}T[/mm]

>  <=> [mm]T^{-1}BT[/mm] = A

>  <=> [mm]A=T^{-1}BT[/mm]

>  
>

Zeigen soll man Folgendes:

[mm] A=S^{-1}BS \Rightarrow B=T^{-1}AT [/mm] für S, T [mm] \in [/mm] GL.

Beweis: [mm] A=S^{-1}BS \gdw [/mm] SA=BS [mm] \gdw SAS^{-1}=B [/mm]

> Ich habe dazu auch noch eine Frage: Warum wählt man
> [mm]T=S^{-1}[/mm] und nicht T=S?

Jetzt will man das formgerecht machen und die invertierte Matrix auf der linken Seite haben, deswegen setzt man [mm] T:=S^{-1} [/mm] und hat:

[mm] B=SAS^{-1}=T^{-1}AT [/mm]

> Aber bei der Transitivität komme ich so leider nicht
> weiter:
>  ZZ: [mm]\forall A,B,C\in \IR^{nxn}: \exists S\in[/mm] GL(n,
> [mm]\IR^{nxn}):[/mm] B =  [mm]S^{-1}AS \wedge \exists T\in GL(n,\IR^{nxn}):[/mm]
>  A =  [mm]T^{-1}CT[/mm] =>  [mm]\exists U\in[/mm]  GL(n, [mm]\IR^{nxn}):[/mm] B =
> [mm]T^{-1}CT[/mm]

Mensch, je weniger Quantoren, desto besser. Zu zeigen ist:

[mm] A=S^{-1}BS [/mm] und [mm] B=T^{-1}CT \Rightarrow A=U^{-1}CU [/mm] für S, T, U [mm] \in [/mm] GL.
  

> Angenommen ich wähle ebenfalls [mm]T=S^{-1}.[/mm] Dann erhalte ich:

Wählen ist schlecht. Konstruieren ist besser. Man will U aus S und T erhalten.

>  B =  [mm]S^{-1}AS[/mm]
>  <=> B =  [mm]TAT^{-1}[/mm]

>  wegen A =  [mm]T^{-1}CT[/mm] gilt:
>  <=>  B =  [mm]TT^{-1}CTT^{-1}[/mm]
>  <=> B = C

Naja, mit [mm] T=S^{-1} [/mm] ist das keine große Überraschung.

>  und ich will ja auf  B = [mm]T^{-1}CT[/mm] kommen.

Nein, das willst du nicht. Du sollst zeigen, dass A zu C symmetrisch ist. Dass B zu C symmetrisch ist, ist Voraussetzung.

Voraussetzung: [mm] A=S^{-1}BS [/mm] und [mm] B=T^{-1}CT. [/mm]

Z.z.: [mm] \exists U\in [/mm] GL: [mm] A=U^{-1}CU. [/mm]

[mm] A=S^{-1}BS \gdw SAS^{-1}=B [/mm] und aus [mm] B=T^{-1}CT [/mm]

[mm] \Rightarrow SAS^{-1}=T^{-1}CT \gdw A=S^{-1}T^{-1}CTS. [/mm]

Setze U:=TS und beweise, dass [mm] S^{-1}T^{-1}=U^{-1}. [/mm]

Gruß,
dormant

Bezug
        
Bezug
Ähnlichkeit von Matrizen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Fr 21.09.2007
Autor: elefanti

Hallo ihr zwei,

ich möchte mich für eure Hilfe bedanken :-)


Liebe Grüße
Elefanti

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]