äquivalenz < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:54 Sa 16.02.2008 | Autor: | mini111 |
hallo,
ich verstehe nicht ganz den sinn und die anwendung von Äquivalenz bei matrizen,die regel besagt ja,dass A,B [mm] \in [/mm] M(m*n;K)wenn S [mm] \in [/mm] GL(m;K)& [mm] T\in [/mm] GL(n;K) dann B=S*A*T^-1.jetzt versteh ich nicht warum es B heißt,ist das nicht einfach die elementarmatrix,die heraus kommt wenn man das rechtsinverse und linksinverse von einer matrix berechnet?
gruß
|
|
|
|
> ich verstehe nicht ganz den sinn und die anwendung von
> Äquivalenz bei matrizen,die regel
Hallo,
es geht hier nicht um eine Regel sondern um eine Definition, welche Du nicht korrekt nacherzählst.
> besagt ja,dass A,B [mm]\in[/mm]
> M(m*n;K)wenn S [mm]\in[/mm] GL(m;K)& [mm]T\in[/mm] GL(n;K) dann
> B=S*A*T^-1.
Nee.
Die Def. sagt:
A;B [mm] \in [/mm] M(m*n;K) heißen äqivalent genau dann, wenn
es invertierbare Matrizen S,T passenden Formates gibt mit [mm] B=S*A*T^{-1}.
[/mm]
Was bedeutet das? Es gibt Basen, bezüglich derer B und A die darstellenden Matrizen derselben Abbildung sind.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:22 So 17.02.2008 | Autor: | mini111 |
hallo angela,
danke für die antwort.ok stimmt die definition war unvollständig aber ich versteh trotzdem nicht was damit gemeint ist,wahrscheinlich steckt da nichts schweres hinter aber ich komm nicht drauf,ein beispiel würde vielleicht helfen.
lieben gruß
|
|
|
|
|
> aber ich versteh trotzdem nicht was damit
> gemeint ist,wahrscheinlich steckt da nichts schweres hinter
> aber ich komm nicht drauf,ein beispiel würde vielleicht
> helfen.
Hallo,
schau Dich in Deinen HÜs um oder im Forum oder in Büchern, da solltest Du Beispiele mit Zahlen finden.
immer, wenn Basistransformationen durchgeführt werden, hat man es mit äquivalenten Matrizen zu tun.
Hast Du eine l.Abbildung f: V--> W,
und ist [mm] A_f [/mm] deren darstellende Matrix bzgl der Basen [mm] B_V [/mm] und [mm] B_W [/mm] von V bzw. W,
sind [mm] C_V [/mm] und [mm] C_W [/mm] weitere Basen von V bzw. W,
und [mm] M^{C_V}_{B_V} [/mm] und [mm] M^{B_W}_{C_W} [/mm] die entsprechenden Basiswechselmatrizen, so ist die Matrix
[mm] M^{B_W}_{C_W}A_fM^{C_V}_{B_V} [/mm] äquivalent zu [mm] A_f, [/mm] denn [mm] M^{B_W}_{C_W}A_fM^{C_V}_{B_V} [/mm] stellt dieselbe Abbildung f dar, jedoch bzgl. der Basen [mm] C_V [/mm] und [mm] C_W.
[/mm]
> wahrscheinlich steckt da nichts schweres hinter
Wenn man das mit der darstellenden Abbildung und dem Basiswechsel verstanden hat, dann nicht.
Statt "A und B stellen dieselbe Abbildung bzgl anderer Basen dar" kann man dann einfach sagen "A und B sind äquivalent".
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:31 So 17.02.2008 | Autor: | mini111 |
hallo angela,
ich habe versucht deiner aussage zu folgen aber so ganz bin ich nicht mit gekommen also du sagtest ja das die äquivalenz von matrizen etwas mit transformationsmatrizen zu tun hat.das habe ich glaube ich soweit verstanden,also das man eine basis A aus einem vektorraum V mittels einer transformationsmatrix und einer zweiten basis B(auch aus V) darstellen kann.richtig?bei deinem beispiel verstehe ich nicht ganz was genau [mm] A_{f} [/mm] sein soll,eine darstellende matrix bzgl. von [mm] B_{v} [/mm] und [mm] B_{w} [/mm] ,wie meinst du das?
gruß
|
|
|
|
|
> also du sagtest ja das die
> äquivalenz von matrizen etwas mit transformationsmatrizen
> zu tun hat.das habe ich glaube ich soweit verstanden,also
> das man eine basis A aus einem vektorraum V mittels einer
> transformationsmatrix und einer zweiten basis B(auch aus V)
> darstellen kann.richtig?
Man kann Vektoren, die bzgl A gegeben sind, in solche bzgl. B transformieren.
Hierfür bedient man sich der passenden Transformationsmatrix.
> bei deinem beispiel verstehe ich
> nicht ganz was genau [mm]A_{f}[/mm] sein soll,eine darstellende
> matrix bzgl. von [mm]B_{v}[/mm] und [mm]B_{w}[/mm] ,wie meinst du das?
Ich hatte doch gesagt, daß [mm]B_{v}[/mm] und [mm]B_{w}[/mm] Basen von V bzw, W sein sollen und f: V [mm] \to [/mm] W (linear).
[mm] A_f [/mm] soll die darstellende Matrix dieser Abbildung f bzgl der beiden angegebenen Basen sein, als die Matrix, die ich mit Vektoren aus V in Koordinaten bzgl. [mm] B_V [/mm] füttere und die mir dann das Bild dieser Vektoren unter der Abbildung f in Koordinaten bzgl. [mm] B_W [/mm] liefert.
Falls Dir das sehr unklar ist, solltest Du das Kapitel über die darstellenden Matrizen linearer Abbildungen durcharbeiten.
Gruß v. Angela
|
|
|
|
|
Was ist denn der Unterschied zwischen einer ähnlichen und einer äquivalenten Matrix? Bei wiki heißt es, dass ähnliche Matrizen ein Spezialfall von äquivalenten Matrizen sind, aber die Definitionen sehen wirklich sehr ähnlich aus. Kann mir das jemand erklären?
Gibt es eigentlich irgendwo Zahlenbeispiele zu äquiv. Matrizen?
|
|
|
|
|
> Was ist denn der Unterschied zwischen einer ähnlichen und
> einer äquivalenten Matrix? Bei wiki heißt es, dass ähnliche
> Matrizen ein Spezialfall von äquivalenten Matrizen sind,
> aber die Definitionen sehen wirklich sehr ähnlich aus. Kann
> mir das jemand erklären?
Hallo,
A und B sind äquivalent, wenn es invertierbare Matrizen S und T gibt mit [mm] B=T^{-1}*A*S,
[/mm]
A und B sind ähnlich, wenn es eine invertierbare Matrix S gibt mit [mm] B=S^{-1}*A*S.
[/mm]
Hier siehst Du deutlich, wieso Ähnlichkeit ein Spezialfall der Äquivalenz ist.
> Gibt es eigentlich irgendwo Zahlenbeispiele zu äquiv.
> Matrizen?
Du kannst Dir doch leicht welche bauen. Nimm Dir irgendeine Matrix A, zwei invertierbare Matrizen S und T, und dann mach Dir ein Beispiel.
Bei den ähnlichen Matrizen ist es wichtig zu wissen, daß Matrizen, die denselben Rang r haben, ähnlich sind. Man kann sie mit passenden Matrizen S und T auf eine Form bringen, in welcher man an den ersten r Stellen der Hauptdiagonalen nur Einsen hat und sonst alles Nullen.
Gruß v. Angela
|
|
|
|
|
Die Matrizen S und T sind dann aber nicht eindeutig oder?
(Begründung?)
|
|
|
|
|
> Die Matrizen S und T sind dann aber nicht eindeutig oder?
> (Begründung?)
Hallo,
was meinst Du damit?
Wenn Du A und B vorgegeben hast, oder was?
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Mo 23.02.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|