www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenäquivalenz / ähnlichkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - äquivalenz / ähnlichkeit
äquivalenz / ähnlichkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äquivalenz / ähnlichkeit: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 14:50 Do 03.04.2008
Autor: chris123

Aufgabe
zeigen sie, dass ähnlichkeit und äquivalenz äquivelenzrelationen auf [mm] K^{mxn} [/mm] sind. wieviele Äquvalenzklassen gibt es bezüglich Ähnlichkeit, wieviele bezüglich Äquivelnz in der menge aller 2x2-Matrizen mit Einträgen in [mm] \IZ_{2}, [/mm] dem Körper, der nur 2 Elemente enthält?

also ich hab mir überlegt, dass es bei der Äquivalnz nur zwei Äquvalenzklassen geben kann, Matrizen mit einer 1 oder mit zwei 1.

Aber ich bin mir nicht sicher.
Könnte jemand mir erklären wie ich den Beweis machen soll.

Vielen Dank im Voraus!

Ich habe diese Frage in keinem anderem Forum gestellt

        
Bezug
äquivalenz / ähnlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Do 03.04.2008
Autor: Bastiane

Hallo chris123!

> zeigen sie, dass ähnlichkeit und äquivalenz
> äquivelenzrelationen auf [mm]K^{mxn}[/mm] sind. wieviele
> Äquvalenzklassen gibt es bezüglich Ähnlichkeit, wieviele
> bezüglich Äquivelnz in der menge aller 2x2-Matrizen mit
> Einträgen in [mm]\IZ_{2},[/mm] dem Körper, der nur 2 Elemente
> enthält?
>  also ich hab mir überlegt, dass es bei der Äquivalnz nur
> zwei Äquvalenzklassen geben kann, Matrizen mit einer 1 oder
> mit zwei 1.

Und wie sieht es mit 4 Einsen aus? Und die Nullmatrix?
  

> Aber ich bin mir nicht sicher.
>  Könnte jemand mir erklären wie ich den Beweis machen
> soll.

Na, ich würde sagen, Reflexivität, Symmetrie und Transitivität nachweisen!?

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
äquivalenz / ähnlichkeit: gar nicht so verkehrt.
Status: (Antwort) fertig Status 
Datum: 16:49 Sa 05.04.2008
Autor: angela.h.b.


> zeigen sie, dass ähnlichkeit und äquivalenz
> äquivelenzrelationen auf [mm]K^{mxn}[/mm] sind. wieviele
> Äquvalenzklassen gibt es bezüglich Ähnlichkeit, wieviele
> bezüglich Äquivelnz in der menge aller 2x2-Matrizen mit
> Einträgen in [mm]\IZ_{2},[/mm] dem Körper, der nur 2 Elemente
> enthält?
>  also ich hab mir überlegt, dass es bei der Äquivalnz nur
> zwei Äquvalenzklassen geben kann, Matrizen mit einer 1 oder
> mit zwei 1.
>  
> Aber ich bin mir nicht sicher.
>  Könnte jemand mir erklären wie ich den Beweis machen
> soll.

Hallo,

wir könnten Dir besser helfen, würdest Du sagen, wie Du hierauf gekommen bist:

>  also ich hab mir überlegt, dass es bei der Äquivalnz nur
> zwei Äquvalenzklassen geben kann, Matrizen mit einer 1 oder
> mit zwei 1.

Du hast eine Äquivalenzklasse vergessen: die Matrizen, die äquivalent zur Nullmatrix sind.

Du kannst zeigen, daß jede der betrachtenden Matizen äquivalent ist zu [mm] \pmat{ 0 & 0 \\ 0 & 0 }, \pmat{ 1 & 0 \\ 0 & 0 } [/mm] oder [mm] \pmat{ 1 & 0 \\ 0 & 1 }. [/mm]

Falls Ihr in der Vorlesung keinen passenden Satz hattet, überlege es Dir anhand der Ränge, die die 2x2-Matrizen haben können.

Die Äquivalenzklassen bzgl Ähnlichkeit kannst Du Dir mit den charakteristischen Polynomen und der JNF überlegen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]