www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieÄquivalenz von Normen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Äquivalenz von Normen
Äquivalenz von Normen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Normen: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 08:28 Fr 17.04.2009
Autor: Ultio

Aufgabe
Beweisen Sie, dass die Äquivalenz von Normen eine Äquivalenzrelation auf der Menge aller Normen auf X ist.

Hi an alle,
hab ein paar Rechenschwierigkeiten. Könnt ihr mir bitte helfen.
Vielen DANK schonmal im Voraus.


Äquivalenzrelationen sind reflexiv(i), symmetrisch(ii) und transitiv(iii).

(i) c [mm] \parallel [/mm] x [mm] \parallel \le \parallel [/mm] x [mm] \parallel [/mm] ' [mm] \le [/mm] C [mm] \parallel [/mm] x [mm] \parallel [/mm]
     mit dieser gleichung ist das doch eher unsinn oder nicht? ebenso dann auch (ii) und (iii)
kann mir jedmand bitte die Gleichung nennen mit der ich die Eigenschaften nachweisen muss/kann.
Dankeschön.

        
Bezug
Äquivalenz von Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Fr 17.04.2009
Autor: rainerS

Hallo!

> Beweisen Sie, dass die Äquivalenz von Normen eine
> Äquivalenzrelation auf der Menge aller Normen auf X ist.
>  Hi an alle,
>  hab ein paar Rechenschwierigkeiten. Könnt ihr mir bitte
> helfen.
>  Vielen DANK schonmal im Voraus.
>  
>
> Äquivalenzrelationen sind reflexiv(i), symmetrisch(ii) und
> transitiv(iii).
>  
> (i) [mm] c\parallel x \parallel \le \parallel x\parallel '\le C \parallel x \parallel[/mm]

Was hat diese Ungleichungskette mit der Reflexivität zu tun?

> mit dieser gleichung ist das doch eher unsinn oder nicht?
> ebenso dann auch (ii) und (iii)
>   kann mir jedmand bitte die Gleichung nennen mit der ich
> die Eigenschaften nachweisen muss/kann.

Du hast eine Relation, nennen wir sie [mm] $\sim$: [/mm] zwei Normen [mm] $\|\cdot\|_1$ [/mm] und [mm] $\|\cdot\|_2$ [/mm] sind äquivalent, also [mm] $\|\cdot\|_1\sim\|\cdot\|_2 [/mm] $, genau dann, wenn es zwei reelle  Zahlen c,C gibt, sodass für alle [mm] $x\in [/mm] X$ gilt: [mm] $c\|x\|_1\le \|x\|_2 \le [/mm] C [mm] \|x\|_1$. [/mm]

Du sollst zeigen, dass [mm] $\sim$ [/mm] eine Äquivalenzrealtion ist. Die drei Bedingungen hast du ja schon hingeschrieben. Die Reflexivität heisst, dass für eine beliebige Norm [mm] $\|\cdot\|$ [/mm] gilt: [mm] $\|\cdot\|\sim\|\cdot\|$. [/mm] Jetzt setzt du die Definition der Relation ein: du musst nachweisen, dass es reelle Zahlen c,C gibt, sodass für alle [mm] $x\in [/mm] X$ gilt: [mm] $c\|x\|\le \|x\| \le [/mm] C [mm] \|x\|$. [/mm]

Die anderen Bedingungen gehen analog.

Viele Grüße
   Rainer

Bezug
                
Bezug
Äquivalenz von Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:10 Mo 20.04.2009
Autor: Ultio

Dankeschön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]