www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieÄquivalenzen Martingal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Äquivalenzen Martingal
Äquivalenzen Martingal < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzen Martingal: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:40 Mo 06.12.2010
Autor: Bappi

Aufgabe
Hallo!

Die Aufgabe ist folgende:

Es seien [mm] $\xi_1,\xi_2,\xi_3,\cdots$ [/mm] unabhängige, nicht negative, Zufallsvariablen. Weiter sei [mm] $\mathcal F_n [/mm] = [mm] \sigma(\xi_1,\cdots,\xi_n)$ [/mm] und [mm] $\mathbb E\xi_j [/mm] =1 [mm] \quad \forall [/mm] j$. Wir setzen [mm] $M_0 [/mm] =1, [mm] M_n [/mm] = [mm] \xi_1\cdot\cdots\cdots \xi_n$ [/mm]

Gezeigt habe ich schon, dass [mm] $(M_n,\mathcal F_n)_n$ [/mm] ein Martingal ist und [mm] $M_\infty [/mm] = [mm] \lim_n M_n$ [/mm] f.s. existiert.

Nun sind noch folgende Äquivalenzen zu zeigen:

i. [mm] $\mathbb EM_\infty [/mm] = 1$
ii [mm] .$M_n \xrightarrow{L^1} M_\infty$ [/mm]
iii. [mm] $(M_n)_n$ [/mm] ist ggi

Da [mm] $M_\infty$ [/mm] f.s. existiert, also insbesondere stochastich konvergent, und somit alle [mm] $\xi_j$ [/mm] in [mm] $L^1$ [/mm] sind, können wir den Satz von Vitali anwenden und damit ist $ii. [mm] \Longleftrightarrow [/mm] iii.$

Mein Problem ist die erste.

Meine Idee von $i. [mm] \Longrightarrow [/mm] ii.$ war:

Da [mm] $(M_n,\mathcal F_n)_n$ [/mm] ein MG, gilt [mm] $\mathbb EM_n [/mm] = [mm] \mathbb EM_1 [/mm] = [mm] \mathbb E\xi_1 [/mm] = 1$ und da nach Voraussetzung [mm] $\mathbb EM_\infty [/mm] = 1$

$0 = [mm] \mathbb E|M_n| - \mathbb E|M_\infty| [/mm] = [mm] \mathbb E(|M_n| [/mm] - [mm] |M_\infty|) \geq \mathbb E|M_n [/mm] - [mm] M_\infty$ [/mm]

und damit [mm] $\mathbb E|M_n [/mm] - [mm] M_\infty| \longrightarrow [/mm] 0$

Für den Weg auf i. fehlt mir jedoch noch die Idee.


Mfg

        
Bezug
Äquivalenzen Martingal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 Mi 08.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]