Äquivalenzen beweisen < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweisen Sie für alle [mm] m,n\in\mathbb{N} [/mm] die folgenden Aussagen.
(a) Für alle k [mm] \in \mathbb{N} [/mm] gilt: m [mm] \le [/mm] n [mm] \gdw [/mm] m+k [mm] \le [/mm] n+k,
(b) Für alle k [mm] \in \mathbb{N} [/mm] ohne {0} gilt: m [mm] \le [/mm] n [mm] \gdw [/mm] m [mm] \cdot [/mm] k [mm] \le [/mm] n [mm] \cdot [/mm] k
Hinweis zu (a): Definition von "<" und Kürzungsregel.
Hinweis zu (b): Benutzen Sie (a) und das Distributivgesetzt. Für die Implikation m [mm] \cdot [/mm] k [mm] \le [/mm] n [mm] \cdot [/mm] k [mm] \Rightarrow [/mm] m [mm] \le [/mm] n benutzen Sie die vollständige Induktion nach m. |
Guten Tag,
ich soll diese Aufgabe lösen und habe schon fleißig in meinem Skript geschaut.
Allerdings finde ich diese Äquivalenzen z.T. "trivial".
Ich komme mal zu den Definitionen:
"<": n<m: [mm] \gdw [/mm] m>n: [mm] \gdw [/mm] n [mm] \le [/mm] m [mm] \wedge [/mm] n [mm] \ne [/mm] m
Kürzungsregel: m+k=n+k [mm] \gdw [/mm] m=n, falls zudem k [mm] \ne [/mm] 0: n [mm] \cdot [/mm] k = m [mm] \cdot [/mm] k [mm] \gdw [/mm] m=n
Distributivgesetz: k [mm] \cdot [/mm] (m+n)=(k [mm] \cdot [/mm] m)+(k [mm] \cdot [/mm] n)
Dann ist " [mm] \le [/mm] " so definiert: n [mm] \le [/mm] m: [mm] \gdw [/mm] m [mm] \ge [/mm] n : [mm] \gdw [/mm] es existiert k [mm] \in \mathbb{N} [/mm] , sodass m=n+k
Für Beweisansätze wäre ich sehr dankbar
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:01 Mo 09.11.2015 | Autor: | tobit09 |
Hallo Ne0the0ne!
> Beweisen Sie für alle [mm]m,n\in\mathbb{N}[/mm] die folgenden
> Aussagen.
>
> (a) Für alle k [mm]\in \mathbb{N}[/mm] gilt: m [mm]\le[/mm] n [mm]\gdw[/mm] m+k [mm]\le[/mm]
> n+k,
> (b) Für alle k [mm]\in \mathbb{N}[/mm] ohne {0} gilt: m [mm]\le[/mm] n [mm]\gdw[/mm]
> m [mm]\cdot[/mm] k [mm]\le[/mm] n [mm]\cdot[/mm] k
>
> Hinweis zu (a): Definition von "<" und Kürzungsregel.
> Hinweis zu (b): Benutzen Sie (a) und das
> Distributivgesetzt. Für die Implikation m [mm]\cdot[/mm] k [mm]\le[/mm] n
> [mm]\cdot[/mm] k [mm]\Rightarrow[/mm] m [mm]\le[/mm] n benutzen Sie die vollständige
> Induktion nach m.
> ich soll diese Aufgabe lösen und habe schon fleißig in
> meinem Skript geschaut.
Guter Anfang.
> Allerdings finde ich diese Äquivalenzen z.T. "trivial".
Es ist ja nicht verkehrt, wenn deine Anschauung der natürlichen Zahlen zu diesen Aussagen passt.
Aufgabe hier ist offensichtlich zu verifizieren, dass sich diese Aussagen schon aus den Axiomen logisch ableiten lassen.
(Wenn dies gelingt, gelten diese Aussagen nicht nur für die gewöhnlichen natürlichen Zahlen, sondern für alle Objekte, die den Axiomen genügen.)
> Ich komme mal zu den Definitionen:
> "<": n<m: [mm]\gdw[/mm] m>n: [mm]\gdw[/mm] n [mm]\le[/mm] m [mm]\wedge[/mm] n [mm]\ne[/mm] m
> Kürzungsregel: m+k=n+k [mm]\gdw[/mm] m=n, falls zudem k [mm]\ne[/mm] 0: n
> [mm]\cdot[/mm] k = m [mm]\cdot[/mm] k [mm]\gdw[/mm] m=n
> Distributivgesetz: k [mm]\cdot[/mm] (m+n)=(k [mm]\cdot[/mm] m)+(k [mm]\cdot[/mm] n)
>
> Dann ist " [mm]\le[/mm] " so definiert: n [mm]\le[/mm] m: [mm]\gdw[/mm] m [mm]\ge[/mm] n : [mm]\gdw[/mm]
> es existiert k [mm]\in \mathbb{N}[/mm] , sodass m=n+k
Gut, dass du die Definitionen gepostet hast.
> Für Beweisansätze wäre ich sehr dankbar
Für a) schreibe dir zunächst auf, was [mm] $m\le [/mm] n$ und [mm] $m+k\le [/mm] n+k$ jeweils nach Definition von [mm] $\le$ [/mm] bedeuten.
Zu b): Für die Hin-Richtung könntest du ebenfalls mit den Definitionen von [mm] $m\le [/mm] n$ und [mm] $m*k\le [/mm] n*k$ arbeiten.
Für die Rück-Richtung zeige für festes [mm] $k\not=0$ [/mm] wie im Hinweis angedeutet per Induktion nach m:
Für alle [mm] $m\in\IN$ [/mm] gilt:
Für alle [mm] $n\in\IN$ [/mm] folgt aus [mm] $m*k\le [/mm] n*k$ bereits [mm] $m\le [/mm] n$.
Im Induktionsschritt liegt die Hauptschwierigkeit aus meiner Sicht darin, [mm] $n\not=0$ [/mm] zu zeigen.
Dann ist $n$ eine Nachfolgerzahl, hat also die Gestalt...
Viele Grüße
Tobias
|
|
|
|