www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraÄquivalenzklassen&Partition
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Äquivalenzklassen&Partition
Äquivalenzklassen&Partition < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen&Partition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 So 19.03.2017
Autor: Herzblatt

Aufgabe
Sei A eine nicht leere Menge. Zeige, dass eine Bijektion existiert zwischen den Äquivalenzklassen in A und den Partitionen von A. Wenn [mm] \sim [/mm] eine Äquivalenzrelation ist dann gilt für die Äquivalenzklassen[a] , dass a [mm] \in [/mm] A eine Partition von A definiert.  Prüfe, dass die Äquivalenzrelation in A die diese Partition definiert, genau [mm] \sim [/mm] ist.

Hallo,

den ersten Teil glaube ich verstanden zu haben. Aber bei der letzten Aussage "Prüfe, dass die Äquivalenzrelation in A die diese Partition definiert, genau [mm] \sim [/mm] ist"
weiß ich leider gar nicht, wie ich vorgehen soll. Was ist denn damit gemeint? Dass Äquivalenzklassen durch ihre Äquivalenzrelation eindeutig bestimmt sind?  Hat jemand einen Tipp?

Liebe Grüße,

Euer <3-blatt

        
Bezug
Äquivalenzklassen&Partition: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Mo 20.03.2017
Autor: Gonozal_IX

Hiho,

Algebra wie immer nicht mein Steckenpferd, aber bevor niemand antwortet :-)
Erst mal: Ist die Aufgabe wirklich wortgetreu so gestellt worden? Ich finde sie nämlich ganz und gar nicht eindeutig.

Ich würde sie folgendermaßen verstehen:
Sei [mm] $\IP$ [/mm] die Menge aller Partitionen von A und X die Menge aller Äquivalenzrelationen auf A, dann gibt es eine Bijektion zwischen [mm] $\IP$ [/mm] und $X$.

Habt ihr denn bereits gezeigt, dass jede Äquivalenzrelation eine Partition auf A definiert?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]