www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraÄquivalenzrel. fehlerh. Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Äquivalenzrel. fehlerh. Beweis
Äquivalenzrel. fehlerh. Beweis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrel. fehlerh. Beweis: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 19:50 Mo 27.11.2006
Autor: Smasal

Aufgabe
Behauptung: wenn eine relation symmetrisch und transitiv ist, so ist sie auch reflexiv, also eine äquivalenzrelation.

Beweis: Sei ~ ein symmetrische und transitive relation auf einer Menge X. sei x € X beliebig, und sei x ~ y. wegen der symmetrie ist dann y ~ x, und aufgrund der transitivität folgt dann auch x ~ x. also ist  ~ reflexiv. Man finde den Fehler im Beweis.

Hallo, habe heute folgende Aufgabe auf dem Übungszettel und kann den Fehler absolut nicht finden. Habe mir auch schon alle Definitionen angeschaut.

Liegt der Fehler etwa darin, dass x~x für alle [mm] x\inM [/mm] gelten muss, x~y aber nicht für alle oder wie genau ist das gedacht?

        
Bezug
Äquivalenzrel. fehlerh. Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Mo 27.11.2006
Autor: Manabago

Hi!

Der Fehler liegt bereits in der Behauptung. Denn was ist per definition eine Äquivalenzrelation? Lg


Bezug
                
Bezug
Äquivalenzrel. fehlerh. Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mo 27.11.2006
Autor: Gnometech

Ich muss zugeben, dass ich diese Antwort nicht nachvollziehen kann... klar, eine Äquivalenzrelation ist per Definition reflexiv, symmetrisch und transitiv, aber die Frage war ja eben, warum es nicht reicht, nur die Symmetrie und Transitivität zu fordern, da die Reflexivität ja aus diesen beiden schon folgt, wenn man dem Beweis da glaubt...

...woraus folgt, dass man misstrauisch sein sollte. Der Beweis enthält tatsächlich einen Fehler und die Fährte stimmte auch schon: sei $x [mm] \in [/mm] X$ beliebig. Wenn es dann ein $y [mm] \in [/mm] X$ gibt mit $x [mm] \sim [/mm] y$, dann folgt tatsächlich $x [mm] \sim [/mm] x$, aber die Existenz eines solchen Elementes $y$ ist eben nicht gesichert... anders gesagt: eine symmetrische und transitive Relation kann eben auch Elemente $x [mm] \in [/mm] X$ besitzen, für die [mm] $\{y \in X : y \sim x \}$ [/mm] leer ist.

Im Extremfall ist diese Menge sogar für alle Elemente leer... Übung: die "leere Relation [mm] $\sim$", [/mm] also diejenige für die $x [mm] \not\sim [/mm] y$ für alle $x, y [mm] \in [/mm] X$ gilt ist symmetrisch und transitiv, aber sicher nicht reflexiv und daher auch keine Äquivalenzrelation.

Alles klar? :-)

Lars

Bezug
                        
Bezug
Äquivalenzrel. fehlerh. Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 Mo 27.11.2006
Autor: DaMenge

Hallo zusammen,

hab mir mal erlaubt die zweite (und richtige) Antwort als solche zu kennzeichnen, wobei ich darauf verzichtet habe, die erste Antwort auf falsch zu setzen (denn in der behauptung steht nix davon, dass eine Äquivalenzrelation vorrausgesetzt ist)

Aber HIER wurde das Thema auch schonmal behandelt.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]