www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Äquivalenzrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Äquivalenzrelation
Äquivalenzrelation < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Do 05.11.2009
Autor: Ayame

Aufgabe
Es seien (S,K) ein Graph und s,t [mm] \in [/mm] S. Ein Weg von s nach t ist ein Tupel [mm] (s_{0},...,s_{k}) [/mm] mit [mm] s_{0}=s, s_{k}=t [/mm] und [mm] (s_{i-1},s_{i}) \in [/mm] K, i=1,...,k. Wir sagen s,t [mm] \in [/mm] S sind verbindbar, wenn es einen weg von s nach t gibt, und definieren die Relation ~ auf S durch

s ~ t : [mm] \gdw [/mm] (s=t) [mm] \vee [/mm] (s und t sind verbindbar)

Weisen sie nach dass ~ eine Äquivalenzrelation ist.

ich weiß ja wie man feststellt ob eine relation eine äuivalenzrelation ist : reflexiv, symmetrisch, transitiv.


Aber wie soll ich es an diesem beispiel machen ?
Könnte mir da jemand helfen ??

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Do 05.11.2009
Autor: Gonozal_IX

Hiho,

Reflexivität überlass ich dir, das ist ein Zweizeiler ;-)
ÄR zeigen ist meistens gar nicht so schwer, wenn man stupide die Definitionen anwendet.

Mal als Beispiel die Transitivität:

Sei [mm] $a\sim [/mm] b$ und $b [mm] \sim [/mm] c$, z.z. [mm] $a\sim [/mm] c$.

Nun können ja drei Fälle auftreten.

1.) a=b, b=c

2.) a=b, b und c sind verbindbar

3.) a und b sind verbindbar, b und c sind verbindbar

Ich mach mal den dritten, die beiden anderen überlasse ich dir:

i) a und b sind verbindbar, d.h es gibt Tupel [mm] $(s_0=a, [/mm] ... , [mm] s_n=b)$ [/mm] mit [mm] $(s_{j-1},s_j) \in [/mm] K$

ii) b und c sind verbindbar, d.h. es gibt Tupel [mm] $(t_0=b, [/mm] ... , [mm] t_m=c)$ [/mm]  und [mm] $(t_{j-1},t_j) \in [/mm] K$

Nun nehmen wir das Tupel:

[mm] $(h_0=s_0=a,...,h_n=s_n=b=t_0,...,h_{n+m}=t_m)$ [/mm] und hierfür gilt nun natürlich, dass jeweils [mm] $(h_{j-1},h_j) \in [/mm] K$ (warum?), d.h. [mm] $a\sim [/mm] c$ => transitiv.

Nun mach mal weiter.
MFG,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]