www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenÄquivalenzrelationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Relationen" - Äquivalenzrelationen
Äquivalenzrelationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelationen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 10:27 Mi 23.11.2011
Autor: sunnygirl26

Aufgabe
Es sei M eine endliche Menge, dann hei?t eine Folge f [mm] \in M^\IN [/mm] periodisch, falls ein k [mm] \in \IN [/mm]
und ein n0 [mm] \in \IN [/mm] existieren mit f(n + k) = f(n) für alle n [mm] \ge [/mm] n0. Das kleinste k heißt die
Periodenlänge, das kleinste n0 die Länge der Vorperiode. Sei nun [mm] \alpha \in M^M [/mm] eine Abbildung.
1. Zeige: Die Folge (n [mm] \mapsto \alpha^n) \in (M^M)^\IN [/mm] ist periodisch.
Hinweis: Zeige zuerst: Es existiert ein n0 [mm] \in \IN, [/mm] mit [mm] \alpha^n0(M) [/mm] = [mm] \alpha^n0+l(M) [/mm] für alle l [mm] \in \IN. [/mm]
2. Bestimme die maximale Periodenlänge für M [mm] \in [/mm] {5; 6; 7}.
Welche Phänomene
sorgen für die Periode und welche für die Vorperiode?
3. Definiere auf [mm] {1,...,n}^{1,...,n}die [/mm] Äquivalenzrelationen: [mm] \alpha \sim [/mm] p [mm] \beta [/mm] genau dann, wenn die Folgen
(k [mm] \to \alpha^k) \in ({1,..,n}^{1,..,n})^\IN [/mm] und (k [mm] \to \beta^k) \in ({1,..,n}^{1,...n})^\IN [/mm] diesselbe Periodenlänge haben und [mm] \alpha \sim [/mm] p [mm] \beta [/mm]
genau dann, wenn ein [mm] \nu \in [/mm] Sn existiert mit [mm] \nu \circ \alpha \circ \nu [/mm] ^-1 = [mm] \beta [/mm] . Zeige: [mm] \alpha \sim [/mm] a [mm] \beta [/mm] impliziert
[mm] \alpha \sim [/mm] p [mm] \beta. [/mm] Was ist mit der Umkehrung?

Hallo
Wie bestimme ich oder finde ich heraus, dass Folgen periodisch sind?
Und wie soll ich die Äquivalenzrelation bei 3. definieren.

        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Mi 23.11.2011
Autor: statler

Hallo!

> Es sei M eine endliche Menge, dann hei?t eine Folge f [mm]\in M^\IN[/mm]
> periodisch, falls ein k [mm]\in \IN[/mm]
>  und ein n0 [mm]\in \IN[/mm]
> existieren mit f(n + k) = f(n) für alle n [mm]\ge[/mm] n0. Das
> kleinste k heißt die
>  Periodenlänge, das kleinste n0 die Länge der Vorperiode.
> Sei nun [mm]\alpha \in M^M[/mm] eine Abbildung.
>  1. Zeige: Die Folge (n [mm]\mapsto \alpha^n) \in (M^M)^\IN[/mm] ist
> periodisch.
>  Hinweis: Zeige zuerst: Es existiert ein n0 [mm]\in \IN,[/mm] mit
> [mm]\alpha^n0(M)[/mm] = [mm]\alpha^n0+l(M)[/mm] für alle l [mm]\in \IN.[/mm]
>  2.
> Bestimme die maximale Periodenlänge für M [mm]\in[/mm] {5; 6; 7}.
>  Welche Phänomene
>  sorgen für die Periode und welche für die Vorperiode?
>  3. Definiere auf [mm]{1,...,n}^{1,...,n}die[/mm]
> Äquivalenzrelationen: [mm]\alpha \sim[/mm] p [mm]\beta[/mm] genau dann, wenn
> die Folgen
>  (k [mm]\to \alpha^k) \in ({1,..,n}^{1,..,n})^\IN[/mm] und (k [mm]\to \beta^k) \in ({1,..,n}^{1,...n})^\IN[/mm]
> diesselbe Periodenlänge haben und [mm]\alpha \sim[/mm] p [mm]\beta[/mm]
>  genau dann, wenn ein [mm]\nu \in[/mm] Sn existiert mit [mm]\nu \circ \alpha \circ \nu[/mm]
> ^-1 = [mm]\beta[/mm] . Zeige: [mm]\alpha \sim[/mm] a [mm]\beta[/mm] impliziert
>  [mm]\alpha \sim[/mm] p [mm]\beta.[/mm] Was ist mit der Umkehrung?

> Wie bestimme ich oder finde ich heraus, dass Folgen
> periodisch sind?

Naja, indem du die in der Aufgabenstellung gegebene Definition nachprüfst. Vielleicht verschaffst du dir zunächst ein einfaches Beispiel mit einer besonders kleinen Menge M. Oder ein Gegenbeispiel? Oder beides?

Damit das mit der Vorperiode vernünftig ist, müßte die 0 eine natürliche Zahl sein. Ist sie das bei euch?

>  Und wie soll ich die Äquivalenzrelation bei 3.
> definieren.

Die ist schon definiert, es sind sogar 2 definiert. Du sollst eine Implikation nachweisen.

Diese Antwort mag dir unbefriedigend oder sogar besch??ert vorkommen, aber von deiner Seite fehlt noch jede Eigenleistung. Du müßtest doch aus der Schule noch etwas über periodische Brüche wissen, oder über Sinus und Cosinus, die sind periodisch.

Gruß aus HH-Harburg
Dieter



Bezug
                
Bezug
Äquivalenzrelationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:09 Mi 23.11.2011
Autor: sunnygirl26

Ne die Antwort reicht mir erstmal völlig aus, da ich gar keine Ahnung hatte wie ich an die Aufgabe ran gehe, deshalb kommt von mir auch noch keine Eigenleistung.

Die 0 gehört bei uns nur zu den natürlichen Zahlen wenn es extra angegeben ist durch [mm] \IN [/mm] 0

D.h. also für den 3. Punkt dass ich nur die Implikation zeigen muss und erklären muss was mit der Umkehrung ist also ob eine Äquivalenz besteht?



Bezug
                        
Bezug
Äquivalenzrelationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 25.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Äquivalenzrelationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 25.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]