www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesÄquivalenzrelationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Äquivalenzrelationen
Äquivalenzrelationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelationen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:01 Do 26.01.2012
Autor: DudiPupan

Aufgabe
Es sei A eine beliebige nichtleere Menge, [mm] $R\subseteq A\times [/mm] A$ eine Relation auf A.
a) Sei R eine Äquivalenzrelation. Zu [mm] $x\in [/mm] A$ heißt die Menge [mm] $[x]_R:=\{ y\in A: R(x,y)\} [/mm] $ die Äquivalenzklasse von x unter R.
Zeigen Sie, dass für x,y [mm] \in [/mm] A entweder [mm] $[x]_R=[y]_R$ [/mm] oder [mm] $[x]_R \cap [y]_R=\emptyset$ [/mm] gilt.
Zeigen Sie weiter, dass [mm] $A=\bigcup_{x\in A} [x]_R$. [/mm]
b) Zeigen Sie umgekehrt: Ist I eine Menge und sind [mm] $\{ A_\iota | \iota\in I \}$ [/mm] nichtleere Teilmengen von A derart, dass [mm] $\iota \neq \delta \Rightarrow A_\iota \cap A_\delta =\emptyset$ [/mm] für alle [mm] $\iota [/mm] , [mm] \delta \in [/mm] I$ und [mm] $A=\bigcup_{\iota\in I} A_\iota$ [/mm] , so ist R gegeben durch
$R(x,y) gdw. [mm] \exists \iote \in I(\{x,y \} \subseteq A_\iota)$ [/mm]
eine Äquivalenzrelation


Hallo :)
Ich habe ein Problem bei der obrigen Aufgabe.
Die erste Teilaufgabe von der a) habe ich.
Jedoch weiß ich bei der Aufgabe
Zeigen Sie weiter, dass [mm] $A=\bigcup_{x\in A} [x]_R$. [/mm]
Nicht weiter, genauso wie bei der b)

Vielen Dank für Die Hilfe

LG
Dudi

        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Fr 27.01.2012
Autor: angela.h.b.


> Es sei A eine beliebige nichtleere Menge, [mm]R\subseteq A\times A[/mm]
> eine Relation auf A.
>  a) Sei R eine Äquivalenzrelation. Zu [mm]x\in A[/mm] heißt die
> Menge [mm][x]_R:=\{ y\in A: R(x,y)\}[/mm] die Äquivalenzklasse von
> x unter R.
>  Zeigen Sie, dass für x,y [mm]\in[/mm] A entweder [mm][x]_R=[y]_R[/mm] oder
> [mm][x]_R \cap [y]_R=\emptyset[/mm] gilt.
>  Zeigen Sie weiter, dass [mm]A=\bigcup_{x\in A} [x]_R[/mm].
>  b)
> Zeigen Sie umgekehrt: Ist I eine Menge und sind [mm]\{ A_\iota | \iota\in I \}[/mm]
> nichtleere Teilmengen von A derart, dass [mm]\iota \neq \delta \Rightarrow A_\iota \cap A_\delta =\emptyset[/mm]
> für alle [mm]\iota , \delta \in I[/mm] und [mm]A=\bigcup_{\iota\in I} A_\iota[/mm]
> , so ist R gegeben durch
>  [mm]R(x,y) gdw. \exists \iote \in I(\{x,y \} \subseteq A_\iota)[/mm]
>  
> eine Äquivalenzrelation
>  
> Hallo :)
>  Ich habe ein Problem bei der obrigen Aufgabe.
>  Die erste Teilaufgabe von der a) habe ich.
>  Jedoch weiß ich bei der Aufgabe
>  Zeigen Sie weiter, dass [mm]A=\bigcup_{x\in A} [x]_R[/mm].
>  Nicht
> weiter,

Hallo,

woran scheitert es?

Es sind [mm] \subseteq [/mm] und [mm]\supseteq[/mm] zu zeigen.


> genauso wie bei der b)

Was ist denn zu zeigen, wenn man zeigen will, daß R eine Äquivalenzrelation ist?

LG Angela

>  
> Vielen Dank für Die Hilfe
>  
> LG
>  Dudi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]