www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Skalarprodukteaffine Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - affine Ebene
affine Ebene < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Di 22.11.2011
Autor: anabiene

Aufgabe
hey! es ist eine affine ebene E gegeben: [mm] \vec{a}+r\vec{v}+s\vec{w} [/mm] mit [mm] r,s\in \IR, \vec{a},\vec{v},\vec{w} \in \IR^3 [/mm]

und die definition: für ein [mm] \vec{c} \in \mathbb R^3 [/mm] gilt [mm] \vec{c} \perp [/mm] E wenn [mm] \vec{c}\cdot \vec{v}=0~\wedge~ \vec{c}\cdot \vec{w}=0. [/mm]

Ich soll zeigen, dass diese definition nicht von der speziellen darstellung des richtungsraumes [mm] r\vec{v}+s\vec{w} [/mm] von E abhängt.

[mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] sind ja lin. unabh., weil sie die richtungsvektoren sind. ich hab mir gedacht ich stelle einen weiteren richtungsvektor [mm] \vec{u} [/mm] als linearkombination von [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] dar. Dann wollte ich das gleichungssystem aus
[mm] \vec{v} \cdot \vec{c}=0 [/mm]
[mm] \vec{w} \cdot \vec{c}=0 [/mm] lösen, was allgemein aber schwierig ist.

bin ich da auf dem richtigen weg? :(

        
Bezug
affine Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Di 22.11.2011
Autor: donquijote


> hey! es ist eine affine ebene E gegeben:
> [mm]\vec{a}+r\vec{v}+s\vec{w}[/mm] mit [mm]r,s\in \IR, \vec{a},\vec{v},\vec{w} \in \IR^3[/mm]
>  
> und die definition: für ein [mm]\vec{c} \in \mathbb R^3[/mm] gilt
> [mm]\vec{c} \perp[/mm] E wenn [mm]\vec{c}\cdot \vec{v}=0~\wedge~ \vec{c}\cdot \vec{w}=0.[/mm]
>  
> Ich soll zeigen, dass diese definition nicht von der
> speziellen darstellung des richtungsraumes
> [mm]r\vec{v}+s\vec{w}[/mm] von E abhängt.
>  [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] sind ja lin. unabh., weil sie die
> richtungsvektoren sind. ich hab mir gedacht ich stelle
> einen weiteren richtungsvektor [mm]\vec{u}[/mm] als
> linearkombination von [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] dar. Dann wollte
> ich das gleichungssystem aus
> [mm]\vec{v} \cdot \vec{c}=0[/mm]
>  [mm]\vec{w} \cdot \vec{c}=0[/mm] lösen,
> was allgemein aber schwierig ist.
>  
> bin ich da auf dem richtigen weg? :(

Eigentlich schon.
Du musst zeigen, dass [mm] \vec{c} \perp [/mm]  E genau dann, wenn [mm] \vec{c}*\vec{u}=0 [/mm] für jeden beliebigen Richtungsvektor von E.
Dazu kannst du ein solches [mm] \vec{u} [/mm] als Linearkombination von [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] darstellen.

Bezug
                
Bezug
affine Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Di 22.11.2011
Autor: anabiene

gut hab ich gemacht: [mm] \vec{u}=\vektor{\lambda v_1+ \mu w_1 \\ \lambda v_2+ \mu w_2 \\ \lambda v_3+ \mu w_3} [/mm]

aber wie löse ich das gleichungssystem [mm] \pmat{ v_1 & v_2 & v_3 & | 0\\ w_1 & w_2 & w_3 & | 0} [/mm] mit [mm] c_1,c_2,c_3 [/mm] als "unbekannte"?

Bezug
                        
Bezug
affine Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 22.11.2011
Autor: donquijote


> gut hab ich gemacht: [mm]\vec{u}=\vektor{\lambda v_1+ \mu w_1 \\ \lambda v_2+ \mu w_2 \\ \lambda v_3+ \mu w_3}[/mm]
>  
> aber wie löse ich das gleichungssystem [mm]\pmat{ v_1 & v_2 & v_3 & | 0\\ w_1 & w_2 & w_3 & | 0}[/mm]
> mit [mm]c_1,c_2,c_3[/mm] als "unbekannte"?

Das ist viel zu kompliziert. Du schreibst einfach [mm] \vec{u}=\lambda\vec{v}+\mu\vec{w} [/mm] und rechnest nach, dass [mm] \vec{u}*\vec{c}=0 [/mm] gilt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]