www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesaffine Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - affine Unabhängigkeit
affine Unabhängigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Unabhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:56 Mo 06.07.2009
Autor: chrissi2709

Aufgabe
[mm] p_1 [/mm] = (1,0,1); [mm] p_2 [/mm] = (0,3,1); [mm] p_3 [/mm] = (2,1,0) [mm] \in \IR^3 [/mm]
a)Zeige, dass die Punkte affin unabhängig sind
b) [mm] a_1 [/mm] = (2,5.-1); [mm] a_2 [/mm] = (-2,5,2); [mm] a_3 [/mm] = (-5,2,5) [mm] \in \IR^3 [/mm]
Stelle die punkte [mm] a_1 [/mm] bis [mm] a_3 [/mm] als Affinkombination von [mm] p_1, p_2, p_3 [/mm] dar.  

Hallo an alle!

zu a)

ich hab den punkt [mm] p_1 [/mm] als basis und [mm] p_2 [/mm] & [mm] p_3 [/mm] als richtungsvektoren genommen (also [mm] p_2 [/mm] bzw [mm] p_3 [/mm] - [mm] p_1) [/mm]
=> [mm] \pmat{1 & -1 & 1 \\ 0 & 3 & 1 \\1 & 0 & -1} [/mm] = 0
hab dann rausbekommen dass [mm] x_1 [/mm] bis [mm] x_3 [/mm] gleich 0 sein müssen damit das gleichungssystem aufgeht.
=> affin unabhängig (hab ich so gelesen, dass ich das so machen kann)
stimmt das?

zu b)
wie setze ich denn einen anderen punkt in affinkombination zu den drei anderen dar?

danke schonmal für die antworten

lg

chrissi

        
Bezug
affine Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mo 06.07.2009
Autor: angela.h.b.


> [mm]p_1[/mm] = (1,0,1); [mm]p_2[/mm] = (0,3,1); [mm]p_3[/mm] = (2,1,0) [mm]\in \IR^3[/mm]
>  
> a)Zeige, dass die Punkte affin unabhängig sind

Hallo,

Du mußt dafür zeigen, daß die beiden Vektoren  [mm] p_2-p_1 [/mm] und [mm] p_3-p_1 [/mm] linear unabhängig im zugrunde liegenden VR sind, also im [mm] \IR^3. [/mm]

>  b) [mm]a_1[/mm] = (2,5.-1); [mm]a_2[/mm] = (-2,5,2); [mm]a_3[/mm] = (-5,2,5) [mm]\in \IR^3[/mm]

> Stelle die punkte [mm]a_1[/mm] bis [mm]a_3[/mm] als Affinkombination von [mm]p_1, p_2, p_3[/mm]
> dar.

Du mußt Koeffizienten [mm] \lambda_1 [/mm] und [mm] \lambda_2 [/mm] finden mit

[mm] a_1=p_1+\lambda_1(p_2-p_1)+\lambda_2 (p_3-p_1). [/mm]

Die anderen entsprechend.

Gruß v. Angela


Bezug
                
Bezug
affine Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 06.07.2009
Autor: chrissi2709

danke für die antwort; hat mir weitergeholfen
konnte die aufgabe somit lösen
also nochmals vielen dank

lg chrissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]