affiner Unterraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:37 Do 11.12.2008 | Autor: | Gopal |
Aufgabe | Definieren Sie für eine Vektormenge M= { [mm] \nu_1, [/mm] ..., [mm] \nu_m [/mm] } [mm] \subset\IR^n [/mm] die Begriffe lineare, affine und konvexe Hülle von M, und beweisen Sie, dass jeder affine Unterraum des [mm] \IR^n [/mm] konvex ist. |
Hallo,
die Hülle H ist ja immer die Menge aller Vektoren die sich durch Kombinationen der gegebenen Vektoren bilden lassen (Linear-, affine und konvexe Kombinationen respektive)
Also H={h: [mm] h=\summe_{i=1}^{m}\lambda_i\nu_i [/mm] }.
Dabei ist für Linearkombinationen [mm] \summe_{i=1}^{n}\lambda_i \in \IR,
[/mm]
für affine Kombinationen [mm] \summe_{i=1}^{n}\lambda_i=1 [/mm] und
für konvexe Kombinationen [mm] \summe_{i=1}^{n}\lambda_i=1 [/mm] und [mm] \lambda_i\ge0.
[/mm]
Soviel denke ich verstanden zu haben.
Ein affiner bzw. konvexer Unterraum, vermute ich mal, ist dann die entsprechende Hülle von k Vektoren aus [mm] \IR^n, [/mm] k [mm] \le [/mm] n.
Aber wie zeige ich, dass der eine den anderen impliziert?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:08 Do 11.12.2008 | Autor: | Gopal |
Aufgabe | Definieren Sie für eine Vektormenge M= { [mm] \nu_1, [/mm] ..., [mm] \nu_m [/mm] } [mm] \subset\IR^n [/mm] die Begriffe lineare, affine und konvexe Hülle von M, und beweisen Sie, dass jeder affine Unterraum des [mm] \IR^n [/mm] konvex ist. |
Was mir noch gefehlt hat ist, was es bedeutet, dass eine Menge konvex ist.
Zunächst ist konvex eine Eigenschaft von Punktmengen und nicht von Vektoren. Aber die Vektoren [mm] \nu_i [/mm] kann man ja als Koordinaten-n-tupel von Punkten auffassen.
Eine Punktmenge P ist konvex, wenn die konvexe Hülle von je zwei Punkten aus P eine Teilmenge von P ist.
Das alles vor Augen ist die Behauptung ja eigentlich offensichtlich. Fragt sich nur noch, wie man's am besten aufschreibt.
Aber das schaff ich nun auch noch.
Hallo,
die Hülle H ist ja immer die Menge aller Vektoren die sich durch Kombinationen der gegebenen Vektoren bilden lassen (Linear-, affine und konvexe Kombinationen respektive) Also H={h: [mm] h=\summe_{i=1}^{m}\lambda_i\nu_i}.
[/mm]
Dabei ist für Linearkombinationen [mm] \summe_{i=1}^{n}\lambda_i \in \IR,
[/mm]
für affine Kombinationen [mm] \summe_{i=1}^{n}\lambda_i=1 [/mm] und
für konvexe Kombinationen [mm] \summe_{i=1}^{n}\lambda_i=1 [/mm] und [mm] \lambda_i
[/mm]
. Soviel denke ich verstanden zu haben.
Aber was genau habe ich nun unter einem affinen bzw. konvexen Unterraum zu verstehen und wie zeige ich, dass der eine den anderen impliziert?
|
|
|
|