www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperalgebraische Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - algebraische Zahl
algebraische Zahl < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

algebraische Zahl: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:15 Do 11.02.2010
Autor: johnny11

Aufgabe
Ist die folgende Zahl algebraisch über [mm] \IQ? [/mm] Bestimme gegebenfalls das Minimalpolynom.

[mm] \wurzel{2}*\wurzel[3]{3} [/mm]

Ich bin wie folgt vorgegangen:

[mm] (\wurzel{2}*\wurzel[3]{3})^6 [/mm] = 72.

Alsi ist [mm] x^6 [/mm] - 72 = 0 mit x = [mm] \wurzel{2}*\wurzel[3]{3} [/mm]

[mm] \IQ(\wurzel{2}*\wurzel[3]{3}) [/mm] hat Dimension 6 über [mm] \IQ [/mm] (weiss ich aus einer früheren Übung).

Also folgt, dass das Minimalpolynom von [mm] \wurzel{2}*\wurzel[3]{3} [/mm] in [mm] \IQ [/mm] Grad 6 haben muss. Also ist gerade [mm] x^6 [/mm] -72 das Minimalpolynom.

Da ein Minimalpolynom von [mm] \wurzel{2}*\wurzel[3]{3} [/mm] exisiert, folgt, dass [mm] \wurzel{2}*\wurzel[3]{3} [/mm] algebraisch ist über [mm] \IQ. [/mm]

Stimmt das alles?

        
Bezug
algebraische Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Do 11.02.2010
Autor: Fulla

Hallo johnny,

> Ist die folgende Zahl algebraisch über [mm]\IQ?[/mm] Bestimme
> gegebenfalls das Minimalpolynom.
>  
> [mm]\wurzel{2}*\wurzel[3]{3}[/mm]
>  Ich bin wie folgt vorgegangen:
>  
> [mm](\wurzel{2}*\wurzel[3]{3})^6[/mm] = 72.
>  
> Alsi ist [mm]x^6[/mm] - 72 = 0 mit x = [mm]\wurzel{2}*\wurzel[3]{3}[/mm]


Hieraus folgt schon, dass [mm] $\sqrt 2\sqrt[3]3$ [/mm] algebraisch über [mm] $\mathbb [/mm] Q$ ist.


> [mm]\IQ(\wurzel{2}*\wurzel[3]{3})[/mm] hat Dimension 6 über [mm]\IQ[/mm]
> (weiss ich aus einer früheren Übung).
>  
> Also folgt, dass das Minimalpolynom von
> [mm]\wurzel{2}*\wurzel[3]{3}[/mm] in [mm]\IQ[/mm] Grad 6 haben muss. Also ist
> gerade [mm]x^6[/mm] -72 das Minimalpolynom.
>  
> Da ein Minimalpolynom von [mm]\wurzel{2}*\wurzel[3]{3}[/mm]
> exisiert, folgt, dass [mm]\wurzel{2}*\wurzel[3]{3}[/mm] algebraisch
> ist über [mm]\IQ.[/mm]
>  
> Stimmt das alles?

Ja, stimmt alles.

Lieben Gruß,
Fulla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]