www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperalgebraische Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - algebraische Zahlen
algebraische Zahlen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

algebraische Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:26 Mi 09.05.2012
Autor: pestaiia

Aufgabe
Zeigen Sie, dass (1+5^(1/2))/2 eine algebraische Zahl ist.

Hallo,
also nach meinen Überlegungen ist die genannte Zahl algebraisch, wenn sie sich als Nullstelle eines Polynoms darstellen lässt. Wobei die Koeffizienten im Polynom doch ganzzahlig sein müssen oder?
Und das klappt hier doch nicht oder?
Mein gefundenes Polynom: 2x-1-5^(1/2)
Danke schon mal für evtl Hilfen!

        
Bezug
algebraische Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mi 09.05.2012
Autor: reverend

Hallo pestaia,

kommt Dir die Zahl nicht bekannt vor?

> Zeigen Sie, dass (1+5^(1/2))/2 eine algebraische Zahl ist.
>  Hallo,
>  also nach meinen Überlegungen ist die genannte Zahl
> algebraisch, wenn sie sich als Nullstelle eines Polynoms
> darstellen lässt. Wobei die Koeffizienten im Polynom doch
> ganzzahlig sein müssen oder?

Wenn Du eins mit rationalen Koeffizienten findest, ist es auch gut. Das kann man ja leicht in eins mit ganzzahligen K. überführen.

>  Und das klappt hier doch nicht oder?

Doch.

>  Mein gefundenes Polynom: 2x-1-5^(1/2)

Das hat eben einen Koeffizienten, der weder ganzzahlig noch rational ist. Auf diesem Weg könntest Du ja für jede Zahl zeigen, dass sie algebraisch ist.
Da in der Zahl eine Wurzel vorkommt, würde ichs direkt mit einem Polynom zweiten Grades versuchen, also [mm] f(x)=x^2+ax+b [/mm]

Das hat bekanntlich Lösungen [mm] x_{1/2}=-\bruch{a}{2}\pm\wurzel{\bruch{a^2}{4}-b} [/mm]

Wenn Du Dir jetzt Deine Zahl anschaust, sieht die doch genau so aus. Man kann schonmal direkt a=-1 setzen und muss nur noch b so finden, dass [mm] a^2-4b=5 [/mm] ist.

>  Danke schon mal für evtl Hilfen!

Übrigens heißt die Zahl [mm] \Phi [/mm] und bezeichnet den goldenen Schnitt, die größere der beiden Lösungen der Gleichung [mm] x=1+\bruch{1}{x} [/mm]

Grüße
reverend


Bezug
                
Bezug
algebraische Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mi 09.05.2012
Autor: pestaiia

Danke reverend,
hab das mal nachgerechnet und du hast recht:-). Eine der Lösungen des Polynoms [mm] x^2-x-1 [/mm] ist tatsächlich (1+5^(1/2))/2
War eigentlich gar nicht schwer;-).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]