www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlenals Produkt von Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - als Produkt von Polynomen
als Produkt von Polynomen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

als Produkt von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mi 06.11.2013
Autor: Lila_1

Aufgabe
Schreiben Sie das Polynom [mm] z^4-8z [/mm] als Produkt von Polynomen von Grad 1.

Ich habe es mit Polynomdivision versucht, aber das klappt nicht.
Deshalb glaub ich, ich muss vllt. z= a+ib benutzen.
Weiß aber nicht wie ich es anwendet soll oder ist mein Ansatz falsch?
Könnt ihr mir ein Tipp/Ansatz geben?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
als Produkt von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mi 06.11.2013
Autor: fred97


> Schreiben Sie das Polynom [mm]z^4-8z[/mm] als Produkt von Polynomen
> von Grad 1.
>  Ich habe es mit Polynomdivision versucht, aber das klappt
> nicht.

Natürlich klappt das ! Sogar ganz hervorragend.


>  Deshalb glaub ich, ich muss vllt. z= a+ib benutzen.
>  Weiß aber nicht wie ich es anwendet soll oder ist mein
> Ansatz falsch?
>  Könnt ihr mir ein Tipp/Ansatz geben?

Es ist [mm] z^4-8z=z(z^3-8) [/mm]

Das Polynom [mm] p(z)=z^3-8 [/mm] hat die Nullstelle 2. ich denke das kann man sehen.

Nun führe die Polynomdivision [mm] (z^3-8):(z-2) [/mm] durch. Wenn Du das machst, bekommst Du

    [mm] z^4-8z=z(z^3-8)=z(z-2)(z^2+az+b). [/mm]

a und b mußt Du noch bestimmen. Dann suche die Lösungen [mm] z_1 [/mm] und [mm] z_2 [/mm] der Gleichung

     [mm] z^2+az+b=0. [/mm]

Fazit:
      

    [mm] z^4-8z=z(z-2)(z-z_1)(z-z_2) [/mm]

FRED

>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
als Produkt von Polynomen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Mi 06.11.2013
Autor: Lila_1

Okey danke, ich probiers aus :)

Bezug
                
Bezug
als Produkt von Polynomen: oder anders...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Mi 06.11.2013
Autor: reverend

Hallo [mm] Lila_1, [/mm] [willkommenmr]

Dass z auszuklammern ist, sollte man schnell herausfinden.
Dann brauchst Du noch alle komplexen Lösungen von [mm] z^3=8. [/mm]

Da müsste eigentlich Herr de Moivre an der Tür klingeln...

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]