www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraalternierende Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - alternierende Gruppe
alternierende Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

alternierende Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:52 Mi 03.10.2007
Autor: studi81

Aufgabe
Für n [mm] \ge [/mm] 3 operiert An (mit der gewöhnlichen Operation) transitiv auf {1,...,n}  

Also ich definiere g [mm] \in [/mm] Sn so
g(1)=s
g(2)=2
.
.
g(s)=1
g(n)=1

Jetzt muss ich zeigen ob g [mm] \in [/mm] An ist, bzw soll ich ein g' dazuholen?
Wie sieht der aufgeschriebener Beweis aus, mir ist klar dass für n [mm] \ge [/mm] 3 es geht weil ich die anderen Zahlen umtauschen kann, ich meine zB kann ich  1 auf 3 abbilden und dann 3 auf 2, und dann habe ich die 1 auf der Richtigen Stelle und eine gerade Anzahl von Transpositionen.

Ich habe zwar den Sinn erfasst aber wie ich es als Beweis aufschreiben kann weiß ich nicht.

Definiert g [mm] \in [/mm] Sn haben wir als Tipp bekommen, jetzt habe ich das oben definiert, hat mich aber noch mehr iritiert.
Bedanke mich im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
alternierende Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Mi 03.10.2007
Autor: andreas

hi

> Also ich definiere g [mm]\in[/mm] Sn so
> g(1)=s
>  g(2)=2
>  .
>  .
>  g(s)=1
>  g(n)=1


was genau ist denn $s$? das kommt hier einfach ohne definition vor?

also ich würde das so angehen: eine gruppe $G$ operiert transitiv auf [mm] $\Omega [/mm] = [mm] \{1, 2, ..., n\}$, [/mm] wenn zu gegeben $a, b [mm] \in \Omega$ [/mm] ein $g [mm] \in [/mm] G$ existiert mit $g(a) = b$.
nun definiere $g'$ durch $g'(a) = b$, $g'(b) = a$ und $g'(i) = i$ für $i [mm] \not\in \{a, b\}$. [/mm] dann ist $g' [mm] \in S_n$ [/mm] und man sieht leicht, dass [mm] $\textrm{sig} [/mm] (g') = -1$, also $g' [mm] \not\in A_n$. [/mm] also muss man noch etwas an $g'$ ändern damit es das gewünschte leistet. wähle etwa $c [mm] \in \Omega \setminus \{a, b \}$ [/mm] (das geht, da $n [mm] \geq [/mm] 3$) und definiere eine abbildung $g$ durch

$g(a) = b$
$g(b) = c$
$g(c) = a$
$g(i) = i$ für $i [mm] \not\in \{a, b, c\}$ [/mm]  

und zeige, dass $g [mm] \in A_n$ [/mm] etwa indem du $g$ als vekettung zweier transpositionen schreibst.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]