www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraalternierende Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - alternierende Normalform
alternierende Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

alternierende Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:44 Di 27.05.2008
Autor: SusanneK

Aufgabe
Sei [mm]A=\pmat{0&0&2&1&1\\0&0&2&-1&-1\\-2&-2&0&1&-1\\-1&1&-1&0&1\\-1&1&1&-1&0} \in M_{55}(\IR) [/mm]. Berechnen Sie eine invertierbare Matrix P, so dass [mm] P^TAP [/mm] eine alternierende Normalform ist.

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
ich weiss grundsätzlich, was ich tun muss:
Ich wähle zuerst [mm] v_1=\vektor{1\\0\\0\\0\\0}, v_2=\vektor{0\\0\\0\\0\\1} [/mm], weil ich mit diesen beiden Vektoren [mm] v_1^TAv_2=1, v_2^TAv_1=-1 [/mm] erhalte.
Dann sei [mm] W_1=\{v \in \IR^5 | \beta(v_1,v) = \beta(v_2,v) = 0\} [/mm] und daraus kann ich dann ein LGS aufstellen, um noch 3 weitere v zu finden, die eine Basis von [mm] W_1 [/mm] bilden.
Hier in dieser Aufgabe ist das dann [mm] \vektor{-1\\-1\\0\\0\\0}, \vektor{3\\0\\1\\-2\\0}, \vektor{1\\0\\1\\0\\-2} [/mm]
Dann muss ich aus diesen 3 Vektoren wieder 2 auswählen, für die gilt [mm] v_1^TAv_2=1, v_2^TAv_1=-1 [/mm]. Ich finde aber keine.
Gibt es hierfür einen Trick, oder habe ich das ganze Verfahren noch nicht richtig verstanden ?

Danke, Susanne.

        
Bezug
alternierende Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Di 27.05.2008
Autor: angela.h.b.


> Sei
> [mm]A=\pmat{0&0&2&1&1\\0&0&2&-1&-1\\-2&-2&0&1&-1\\-1&1&-1&0&1\\-1&1&1&-1&0} \in M_{55}(\IR) [/mm].
> Berechnen Sie eine invertierbare Matrix P, so dass [mm]P^TAP[/mm]
> eine alternierende Normalform ist.

>  ich weiss grundsätzlich, was ich tun muss:

Hallo,

ich nicht.

Ist das Ziel, diese alternierende Normalform, diese Matrix:

[mm] \pmat{0&0&0&0&1\\0&0&0&1&0\\0&0&0&0&0\\0&-1&0&0&0\\-1&0&0&0&0} [/mm]  ?

Gruß v. Angela



Bezug
                
Bezug
alternierende Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Di 27.05.2008
Autor: SusanneK

Hallo Angela,
die alternierende Normalform, besteht (bei uns ?) aus 2x2 Blöcken, die so aufgebaut sind:
[mm] \pmat{0&1\\-1&0} [/mm]
Der Rest wir mit 0 aufgefüllt.
In dieser Aufgabe ist die alternierende Normalform also:
[mm]\pmat{0&1&0&0&0\\-1&0&0&0&0\\0&0&0&1&0\\0&0&-1&0&0\\0&0&0&0&0}[/mm]

LG, Susanne.


Bezug
                        
Bezug
alternierende Normalform: Lösungsweg
Status: (Frage) überfällig Status 
Datum: 12:08 Sa 31.05.2008
Autor: opafabian

Hallo Susanne,
könntest Du mir nochmal grob den Lösungsweg erklären? Ich habe gerade die gleiche Aufgabe, mir fehlen aber auch die Tricks :-) Hier oder per mail an phirlephanz (at) gmx (punkt) de

Bezug
                                
Bezug
alternierende Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Mo 02.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
alternierende Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Do 29.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]