analytisch und holomorph < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:35 Fr 03.07.2009 | Autor: | Mathec |
Hallo Leute!
Ich habe mal wieder ein kleines Verständnisproblem:
Ich habe gerade in meinem Skript gelesen, dass holomorph und analytisch äquivalent sind. Eine Funktion f ist in a analytisch, wenn f um a lokal in eine Potenzreihe entwickelbar ist, d.h. wenn um a eine offene Umgebung konstruiert werden kann, die noch vollständig im Holomorphiebereich von f liegt, so dass für alle z aus dieser Kreisscheibe die Potenzreihe konvergiert. Jetzt frage ich mich, wenn jede holomorphe Funktion analytisch ist, also um jeden Punkt des Holomorphiebereichs in eine konvergente Potenzreihe entwickelbar, was ist dann bei Funktionen auf dem Rand des Bereichs??Denn da existiert ja keine offene Umgebung eines Punktes,die noch vollständig im Holomorphiebereich enthalten ist..oder etwa doch??? Ich hoffe, ihr könnt mir helfen bzw. habt mein Problem verstanden, hoffe, ich habe mich nicht zu ungeschickt ausgedrückt!!!
Danke für eure Hilfe!
Mathec
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:15 Fr 03.07.2009 | Autor: | pelzig |
Ja, analytisch wird halt übrlicherweise nur für Funktionen [mm] $f:D\to\IC$ [/mm] erklärt, wobei [mm] $D\subset\IC$ [/mm] offen sein muss. Dann heißt f analytisch, falls es für alle [mm] $z\in [/mm] D$ eine Potenzreihe existiert, die um z gegen f konvergiert. Auf offenen Mengen gibt es keine Randpunkte, deshalb stellt sich das Probem was du angedeutet hast gar nicht.
Reichen einem die offenen Mengen nicht, so definiert man meist [mm] $f:M\to\IC$ [/mm] heißt holomorph/analytisch, falls es eine offene Menge [mm] $O\supset [/mm] M$ gibt und eine holomorphe/analytische Funktion [mm] $g:O\to\IC$ [/mm] mit [mm] $g\big|_M=f$. [/mm] Damit gibt es keine Probleme.
Gruß, Robert
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:42 So 05.07.2009 | Autor: | Mathec |
Super, habs verstanden!
Vielen Dank!!!
Mathec
|
|
|
|