www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisangeordnete Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - angeordnete Körper
angeordnete Körper < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

angeordnete Körper: Tipp Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 10.11.2005
Autor: stiefler

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo erstmal an alle,

habe folgendes problem zu lösen.

Sei K ein angeordneter Körper und seien [mm] \alpha, \beta \in [/mm] K mit [mm] \alpha \le \beta. [/mm] zeigen sie, dass zu jedem r [mm] \in [/mm] K mit [mm] \alpha\le\r\le\beta [/mm] Elemente x,y [mm] \in [/mm] K existieren mit

        r=x * [mm] \alpha [/mm] + y * [mm] \beta, [/mm] 0 [mm] \le [/mm] y [mm] \le [/mm] 1, 0 [mm] \le [/mm] x \ le 1 und x+y=1

sind x und y eindeutig bestimmt?

Habe die Gleichung x+y=1 nach x und y umgestellt und in die 2te Gleichung  
r=x * [mm] \alpha [/mm] + y * [mm] \beta [/mm] eingesetzt und nach x und y aufgelößt.

Was muss ich jetzt tun?

Danke schon mal für eure tipps und lösungen


        
Bezug
angeordnete Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Fr 11.11.2005
Autor: Toellner

Hallo Stiefler,

ich benutze aus Bequemlichkeit lateinische statt griechische Buchstaben und lasse den Sonderfall a = r = b weg:
Zu a [mm] \le [/mm] r [mm] \le [/mm] b definiere
x : = [mm] \bruch{b-r}{b-a} [/mm]   und  y := [mm] \bruch{r-a}{b-a} [/mm] .
Dann kannst Du  mit diesen Werten zeigen:
1)  0 [mm] \le [/mm] x [mm] \le [/mm] 1 und  0 [mm] \le [/mm] y [mm] \le [/mm] 1
2)  x + y = 1
3)  xa + yb = r.

Zur Eindeutigkeit:
Du könntest eine zweite Lösung x' und y' annehmen, sodass xa + yb = x'a + y'b ist und für y = 1 - x einsetzen und für y' = 1 - x'.


Gruß, Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]