www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenarchimedischer körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - archimedischer körper
archimedischer körper < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

archimedischer körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 So 10.12.2006
Autor: Knuffy

Aufgabe
[Dateianhang nicht öffentlich]

Man soll zeigen dass es ein [mm] $r\in\IQ$ [/mm] gibt das zwischen 2 Reelen Zahlen liegt [mm] $a,b\in\IR$. [/mm] also $a<r<b$

die archimedizität besagt ja, dass es zu jeder rellen zahl eine größere natürliche zahl gibt. das würde bedeuten, dass es ein [mm] $n\in\IN$ [/mm] gibt sodass [mm] $a<\bruch{1}{n}
das würde aber als beweis nicht reichen. und außerdem steht ja in der aufgabe dass man 2 mal die archimedizität anwenden soll. weiß jemand wie ich dass ganze beweisen kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
archimedischer körper: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mo 11.12.2006
Autor: nathenatiker

Hallo,

wenn ich mich recht erinnere, ging der Beweis so:

Man wähle ein n [mm] \in \IN [/mm] mit [mm] \bruch{1}{n} [/mm] < b - a.(gilt ja nach dem Archimedischen Axiom).
Dann sei A die Menge der ganzen Zahlen > n*x. Dann ist A nach dem Archimedischen Axiom nicht leer und es existiert ein kleinstes Element m.
Dann folgt daraus:
[mm] x<\bruch{m}{n}= \bruch{m-1}{n}+\bruch{1}{n} [/mm]
so, und jetzt fehlt noch ein Schritt Lösung und dann bist du fertig!

Hoffe ich konnte helfen.

MFG

Robert

Bezug
                
Bezug
archimedischer körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Di 12.12.2006
Autor: Knuffy

Danke für deine Hilfe nathenatiker. habs mittlerweile hinbekommen. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]