www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer Gleichungssystemearithmetische Operationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Numerik linearer Gleichungssysteme" - arithmetische Operationen
arithmetische Operationen < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

arithmetische Operationen: Euklidischer Algorithmus
Status: (Frage) beantwortet Status 
Datum: 10:36 So 19.02.2006
Autor: Britta82

Aufgabe
Numerischer Aufwand des Gaußschen Eliminationsverfahrens
Gegeben sei eine reguläre Matrix A aus [mm] \IC^{nxn} [/mm] für die eine LR-Zerlegung existiert. Zeigen Sie:
a) Das Gaußschen Eliminationsverfahren zur Lösung von Ax=b erfordert [mm] \bruch{2}{3}n^{3}+O(n^{2}) [/mm] Operationen.
b) Die Inverse [mm] A^{-1} [/mm] kann unter Ausnutzung der Beziehung [mm] A^{-1}=(x^{(1)}....x^{(n)}) [/mm] mit maximal [mm] \bruch{8}{3}n^{3}+O(n^{2}) [/mm] Operationen berechnet werden, wobei [mm] x^{(1)}..x^{(n)} [/mm] die Lösungen von [mm] Ax^{(i)}=e^{(i)} [/mm] sind

Hi,

also ich weiß nicht genau wie ich die Operationen abzählen kann,
zu a) hab ich mir überlegt, daß man ja n Zeilenmultiplikationen mit einem Faktor qi brauch mal n Zeilenadditionen mal n Schritte zum Ausrechnen, also [mm] n^{3}, [/mm] aber woher kommt die [mm] \bruch{2}{3}? [/mm]
Bei der Inversenberechnung gilt dasselbe, ich weiß nicht wie ich auf den Vorfaktor komme.

Vielen dank für die Hilfe

Freundliche Grüße

Britta

        
Bezug
arithmetische Operationen: Dimension beachten
Status: (Antwort) fertig Status 
Datum: 16:07 So 19.02.2006
Autor: mathemaduenn

Hallo Britta,

> zu a) hab ich mir überlegt, daß man ja n
> Zeilenmultiplikationen mit einem Faktor qi brauch mal n
> Zeilenadditionen mal n Schritte zum Ausrechnen, also [mm]n^{3},[/mm]
> aber woher kommt die [mm]\bruch{2}{3}?[/mm]

Vom Ansatz her solltest Du beachten das die "Matrix" auf der gerechnet wird immer kleiner wird und dann einen "Gaußschritt" genauer anschauen.
Eine "Zeilenmultiplikation" bedeutet ja n einzelne Multiplikationen.

zu b)
Für die Lösung von LRx=e sind zwei Dreieckssysteme zu lösen.
Lc=e
Rx=c
Also müßtest Du Dir anschauen wieviele Operationen man zum Lösen eines Dreieckssystems benötigt.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]