www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenbahnkurve eines schwimmers
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - bahnkurve eines schwimmers
bahnkurve eines schwimmers < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bahnkurve eines schwimmers: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 So 12.10.2008
Autor: dasZamomin

Aufgabe
Die Geschwindikeitsverteilung Vf(x) eines strömenden Flusses der Breite 2a und der Geschwindigkeit v0 in der Mitte sei gegeben als Funktion des Abstandes x von der Mittellinie als parabolisch angenommen: [mm] Vf(x)=v0[1-(x^2/a^2)].Ein [/mm] Schwimmer mit der Eigengeschwindikeit Ve=const. schwimmt immer quer zur Flusrichtung von einem Ufer zum anderen. Bestimmen sie die Bahn des Schwimmers. Bestimmen sie die Abdrift.

hallo zusammen!

ich hab gerade mit differentialgleichungen begonnen und bin noch ein bisschen ahnungslos. mir ist nicht ganz klar wie ich zu meiner gleichung komme, hab mir aber folgendes dazu überlegt (allerdings kommt es mir zu einfach vor und das macht mich misstrauisch):

dies beispiel ist doch eigentlich so ähnlich wie eine wurfparabel. der geworfene stein in der wurfparabel ist mein schwimmer, er wird quasi gerade entlang der x-achse mit Ve=const. geworfen. die kraft die ihn aus seiner bahn ablenkt ist nicht g sondern Vf(und strömt halt nach "oben" und nicht nach unten). dann ist doch die bewegung auf der x-achse gegeben durch

x(t)=Ve*t-a ;(t element aus [0,(2a/Ve)]).

für die bewegung auf der y-achse hätten wir dann das

intergral über Vf(t).

d.h. meine bahnkurve ist dann gegeben durch (x,y)=[Ve*t-a,integral Vf(t)]
dann eleminiere ich t und komme so zu meiner gleichung y(x).
auf dem angabe blatt steht dann noch der hinweis das die DG für die bewegungen auf x und y richtung entkoppelt sind.

stimmt das?

vielen dank und lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
bahnkurve eines schwimmers: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 So 12.10.2008
Autor: Al-Chwarizmi


> d.h. meine bahnkurve ist dann gegeben durch
> (x,y)=[Ve*t-a,integral Vf(t)]

     im Prinzip richtig; das Ganze ist natürlich noch im
     Detail durchzuführen.
     Für die Integration würde ich jedenfalls noch bei
     der Variablen  t  bleiben. Am Ende lässt sich alles
     leicht auf die Variable  x  zurück transformieren.

>  dann eliminiere ich t und komme so zu meiner gleichung
> y(x).
> auf dem angabe blatt steht dann noch der hinweis das die DG
> für die bewegungen auf x und y richtung entkoppelt sind.
>  
> stimmt das?

Das nimmt man an; d.h. man setzt voraus, dass der
Schwimmer unbeirrt von der seitlichen Strömung seine
eigene Schwimmrichtung stets genau quer zur Fluss-
richtung beibehält. Dies wäre praktisch sicher schwierig,
weil die seitliche Strömung z.B. am Kopf grösser sein
kann als an den Füssen.



Ein Ergebnis:  Für die Abdrift habe ich erhalten:  [mm] \bruch{4v_0}{3v_e}*a[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]