www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenbasis im komplexen best.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - basis im komplexen best.
basis im komplexen best. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

basis im komplexen best.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 So 14.02.2010
Autor: muhmuh

Aufgabe
Ergänzen Sie die Vektoren
b_!= (i,i,1) und [mm] b_2 [/mm] (1+i, 1´1-i) zu einer Basis des C-Vektorraums [mm] C^{3} [/mm]

Hallo,

normalerweise bestimme ich basen durch einfaches Überlegen, hier komme ich so aber nicht weiter.

daher habe ich folgendes LGS aufgestellt:

r* [mm] \vektor{i \\ i \\ 1} [/mm] + s* [mm] \vektor{1+i \\ 1\\ 1-i} [/mm] + t*  [mm] \vektor{a \\ b\\ c}= \vektor{0 \\ 0\\0} [/mm]

Ich habe nun mehr unbekannte als Gleichungen, s gibt aber ja auch mehrere Basisergänzungsmöglichkeiten,
deswegen hab ich einfach c= i gesetzt

um dann herauszubekommen, dass r=-s=-t
und dann hab ich das Gleichungssystem weiter aufgelöst und so die einzelnen komponenten von a=x+iy herausbekommen.

[mm] b_3 [/mm] wäre daher =  [mm] \vektor{-1 \\ -1+i\\ i} [/mm]

ist die Vorgehensweise so richtig?

Ich habe nämlich nun versucht zu überprüfen ob die Vektoren nun alle linear unabhängig sind, aber im komplexen komme ich da mit dem Gaußverfahren nicht so richtig klar.

Hat mir jemand Tips für die Aufgabe,
gibts noch einen anderen Weg?

Danke,

lg

katja

        
Bezug
basis im komplexen best.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 So 14.02.2010
Autor: abakus


> Ergänzen Sie die Vektoren
>  b_!= (i,i,1) und [mm]b_2[/mm] (1+i, 1´1-i) zu einer Basis des
> C-Vektorraums [mm]C^{3}[/mm]
>  Hallo,
>  
> normalerweise bestimme ich basen durch einfaches
> Überlegen, hier komme ich so aber nicht weiter.
>  
> daher habe ich folgendes LGS aufgestellt:
>  
> r* [mm]\vektor{i \\ i \\ 1}[/mm] + s* [mm]\vektor{1+i \\ 1\\ 1-i}[/mm] + t*  
> [mm]\vektor{a \\ b\\ c}= \vektor{0 \\ 0\\0}[/mm]
>  
> Ich habe nun mehr unbekannte als Gleichungen, s gibt aber
> ja auch mehrere Basisergänzungsmöglichkeiten,
>  deswegen hab ich einfach c= i gesetzt
>  
> um dann herauszubekommen, dass r=-s=-t
>  und dann hab ich das Gleichungssystem weiter aufgelöst
> und so die einzelnen komponenten von a=x+iy
> herausbekommen.
>  
> [mm]b_3[/mm] wäre daher =  [mm]\vektor{-1 \\ -1+i\\ i}[/mm]
>  
> ist die Vorgehensweise so richtig?
>  
> Ich habe nämlich nun versucht zu überprüfen ob die
> Vektoren nun alle linear unabhängig sind, aber im
> komplexen komme ich da mit dem Gaußverfahren nicht so
> richtig klar.
>  
> Hat mir jemand Tips für die Aufgabe,
>  gibts noch einen anderen Weg?
>  
> Danke,

Hallo Katja,
ich würde a=0 und [mm] c\ne [/mm] 0 ansetzen.
Für a=0 müssen r und s Null sein, während t noch beliebig ist.
Für r=0, s=0 und t ungleich 0 kann dann die dritte Zeile nicht Null werden.
Gruß Abakus

>  
> lg
>  
> katja


Bezug
                
Bezug
basis im komplexen best.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 So 14.02.2010
Autor: muhmuh

hae, nun bin ich etwas confused,

soll ich nicht gerade eine Basis konstruieren mit a,b,c sodass das ganze null wird?


hm kann die frage nicht mehr rückgängig machen...
sorry stand auf dem schlauch,
dafuer dass die vektoren linear unabhängig sind und das muss ja fuer eine basis gelten, müssen r,s,t =0 sein,
und durch deine wahl der basis ist das erzwungen.

danke
nun hab ichs verstanden:)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]