www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriebedingte Wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - bedingte Wahrscheinlichkeit
bedingte Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 15.03.2015
Autor: kalor

Hallo

Ich habe Probleme bedingte Wahrscheinlichkeiten konkret zu berechnen. Vor allem, wenn  wir keine diskrete Zufallsvariable haben.

Hier ist ein Beispiel: Sie [mm] $f(x)=2x^2$ [/mm] und [mm] $g(x)=\begin{cases} 2 &\mbox{für } x \in[0,\frac{1}{2}) \\ x & \mbox{für} x \in [\frac{1}{2},1]. \end{cases}$ [/mm] wobei der Wahrscheinlichkeitsraum [mm]\Omega = [0,1][/mm] mit dem Lebesguemass.

Ich bin nun daran interessiert $E[f|g]$ zu berechnen. Wenn $g$ auch auf [mm] $[\frac{1}{2},1]$ [/mm] diskret wäre, hätte ich keine Probleme. Dann könnte ich einfach auf alle mögliche Werte von $g$ "bedingen". Aber da es nun keine diskrete Zufallsvariable mehr ist, weiss ich nicht, wie ich diesen bedingten Erwartungswert berechnen soll.
Danke für die Hilfe!!

kaloR

        
Bezug
bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 So 15.03.2015
Autor: steppenhahn

Hallo kalor,

> Ich habe Probleme bedingte Wahrscheinlichkeiten konkret zu
> berechnen. Vor allem, wenn  wir keine diskrete
> Zufallsvariable haben.
>
> Hier ist ein Beispiel: Sie [mm]$f(x)=2x^2$[/mm] und
> [mm]$g(x)=\begin{cases} 2 &\mbox{für } x \in[0,\frac{1}{2}) \\ x & \mbox{für} x \in [\frac{1}{2},1]. \end{cases}$[/mm]
> wobei der Wahrscheinlichkeitsraum [mm]\Omega = [0,1][/mm] mit dem
> Lebesguemass.
>  
> Ich bin nun daran interessiert [mm]E[f|g][/mm] zu berechnen.


Ich nehme an, du meinst hier E[f(X)|g(X)], wobei $X [mm] \sim [/mm] U[0,1]$ (entspricht W-Raum $[0,1]$ mit Lebesgue-Maß).

Folgende Idee:

Nennen wir kurz $Y := f(X)$, $Z := g(X)$. Du kannst versuchen, zunächst mit Messbarkeitsaussagen zu begründen, dass der bedingte Erwartungswert eine bestimmte Form hat:

Da $E[Y|Z]$ $Z$-messbar ist, können wir schreiben:

E[Y|Z] = [mm] \begin{cases}A(Z), & Z = 2\\ B(Z), & Z < 2\end{cases}. [/mm]

1) Kannst du begründen und berechnen, was $A(Z)$ ist? (Nutze die Definition des bedingten Erwartungswerts, [mm] $\inf_{F}Y \dif \IP [/mm] = [mm] \int_{F}E[Y|Z] \dif \IP$ [/mm] für $F [mm] \in \sigma(Z)$ [/mm]  (*).)

2) Kannst du heuristisch argumentieren, was $B(Z)$ ist?

3) Versuche, die Aussage 2 erneut mit (*) zu verifizieren.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]