www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungbedingte Wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - bedingte Wahrscheinlichkeit
bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Wahrscheinlichkeit: bedingte Wahrscheinlichkeite
Status: (Frage) beantwortet Status 
Datum: 13:39 Mi 30.12.2009
Autor: noname86

Aufgabe
Fur zwei Ereignisse A und B gelte:
[mm]
P(A[mm]\cap B[/mm]) = 1/12
P(A[mm]\cup B[/mm]) = 5/6
P (A|[mm]\bar B[/mm]) = 1/2

Welche Werte haben P(A) und P(B), und sind A und B unabhangig?

Bei den Aufgaben im Script, musste man dazu nur Formel von Bayes anwenden, hier komme ich aber trotz ausprobieren der verschiedenen Formeln, auch ineinandergeschachtelt nicht weiter.

Der Ansatz sollte mit der Formel

P(A[mm]\cup B[/mm])  = P ( A) + P(B) - P(A[mm]\cap B[/mm])

laufen, aber da hat man ja noch zwei Unbekannte. Wie hilft mir dann P P (A | [mm]\bar B[/mm])  weiter, um eine Unbekannte dann eliminieren zu können. Ich erkenne aus der Angabe der bedingten Wahrscheinlichkeit nur, dass P ( [mm]\bar A[/mm] | [mm]\bar B[/mm])  = 1 - 1/2 ist.

Freue mich auf eure Antwort.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mi 30.12.2009
Autor: luis52

Moin

[willkommenmr]

Erstelle eine Wahrscheinlichkeitstabelle. Da schau her.

vg Luis


Bezug
        
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 30.12.2009
Autor: noname86

Ich habe die Wahrscheinlichkeitstabelle aufgemalt, sind ja insgesamt 9 felder. Dabei habe ich links oben die Angabe A [mm]\cap[/mm] B eingetragen, ganz rechts unten den Summenwert 1. Allerdings kann ich sonst keinen weiteren Eintrag finden, da wir einmal die Vereinigungsmenge gegeben haben, und einmal eine bedingte Wahrscheinlichkeit, für die ich aber jetzt keinen Zusammenhang sehe.

Bezug
                
Bezug
bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mi 30.12.2009
Autor: noname86

Ok das Feld P(Nicht-A geschnitten Nicht-B) habe ich nun aus der Vereinigungswahrscheinlichkeit errechnen können. Außerdem weiß ich nun, dass P(A)+P(B) = 11/12 ist.

Doch wie erhalte ich nun noch das eine fehlende Feld, womit dann die ganze Aufgabe gelöst ist? Leider ist es schwer, sich das ganze vorzustellen, da in dem andern Beispiel man ja die Einzelwahrscheinlichkeiten nur abzählen muss, hier aber sollte man sich das letzte wohl wieder über die Formeln erschließen.

Bezug
                        
Bezug
bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mi 30.12.2009
Autor: luis52


> Doch wie erhalte ich nun noch das eine fehlende Feld, womit
> dann die ganze Aufgabe gelöst ist? Leider ist es schwer,
> sich das ganze vorzustellen, da in dem andern Beispiel man
> ja die Einzelwahrscheinlichkeiten nur abzählen muss, hier
> aber sollte man sich das letzte wohl wieder über die
> Formeln erschließen.

Du hast anscheinend noch nicht die Information $P [mm] (A\mid \bar [/mm] B ) = 1/2 $ ausgeschlachtet ...

vg Luis

Bezug
                                
Bezug
bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 30.12.2009
Autor: noname86

danke Louis, wenn Du möchtest kannst Du mir noch die Lösungen bestätigen:

P(A) = 1/6
P(B) = 5/6

Unabhängigkeitstest P(A)*P(B) = 5/36 != 1/12 => A und B sind linear abhängig

Bezug
                                        
Bezug
bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mi 30.12.2009
Autor: luis52


> danke Louis, wenn Du möchtest kannst Du mir noch die
> Lösungen bestätigen:
>  
> P(A) = 1/6
>  P(B) = 5/6

Ich mag mich irren, aber ich erhalte $P(A)=1/4$ und $P(B)=2/3$.

>  
> Unabhängigkeitstest P(A)*P(B) = 5/36 != 1/12 => A und B
> sind linear abhängig

Nicht *linear*! (Andere Baustelle)

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]