www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikbedingte wahrscheinlichkeit?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - bedingte wahrscheinlichkeit?
bedingte wahrscheinlichkeit? < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte wahrscheinlichkeit?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Sa 01.03.2008
Autor: der_puma

hi,
der ob einer stadt achtet darauf,dass bei seinen empfängen alle bürgergruppen angemessen vertreten sind. so beträgt die wahrscheinlichkeit einer einladung für vertreter von sizialen einrichtungen 30%.aus erfahrung weiss man ,dass 20% aller einladungen nicht am empfang teilnehmen .diue besucher aus der gruppe S(soziale einrichtungen) stellen 27% aller teilnehmer am empfang.erstellen sie eine vollständiges baumdiagramm.

also ich habe mit einer sache probleme...mit der 27%
P(s)=0,3
p(teilnehmen)=0,8

in der vorgegebenen lösung sagt man,dass die 27% die schnittwahrscheinlichkeit der ergebnisse t und s ist . ich sehe dass aber so ,dsas es hier um eine bedingte wahrscheinlichkeit geht. die wahrscheinlichkeit,dass ich unter denen die kommen einen vertreter der sozialen einrichtungen habe ist 27%.

kurz ich finde: p(s)unter der bedingung,dass t eingerteten ist =0,27
sie finden: p(s geschnitten t)=0,27

das versteh ich einfach nicht !

gruß

        
Bezug
bedingte wahrscheinlichkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Sa 01.03.2008
Autor: Zwerglein

Hi, puma,

die Aufgabe lässt sich nur so verstehen, dass an dem Empfang auch ein paar Leutchen teilnehmen, die KEINE Einladung bekommen haben!
Denn wenn Du nur die Teilnehmer der sozialen Einrichtungen betrachtest, die eine Einladung bekommen haben und dann auch hingegangen sind, kommst Du natürlich nur auf 24%. Die restlichen 3% sind demnach gekommen, obwohl sie gar keine Einladung gekriegt haben!

mfG!
Zwerglein

Bezug
                
Bezug
bedingte wahrscheinlichkeit?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Sa 01.03.2008
Autor: der_puma

was wie komm ich denn af die 3 % die nicht hingegegangen sind?


Bezug
                        
Bezug
bedingte wahrscheinlichkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 02.03.2008
Autor: Zwerglein

Hi, puma,

also mein Baumdiagramm sieht so aus:

1.Verzweigung: S bzw. [mm] \overline{S} [/mm] mit Zweigwahrsch. 0,3 bzw. 0,7.

2.Verzweigung: T bzw. [mm] \overline{T}. [/mm]
Zweigwahrsch. im Fall von S: 0,8 bzw. 0,2.
Die Zweigwahrsch. im Fall von [mm] \overline{S} [/mm] musst Du so bestimmen,
dass am Ende für P(T)=0,27 rauskommt, also so, dass: [mm] P(\overline{S}\quad \cap [/mm] T) = 0,03 (denn: P(S [mm] \cap [/mm] T) =0,24).

mfG!
Zwerglein

Bezug
        
Bezug
bedingte wahrscheinlichkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 04:43 So 02.03.2008
Autor: Zneques

Hallo,

>  So beträgt die wahrscheinlichkeit einer einladung für vertreter von sizialen einrichtungen 30%.

Da ist aber schwammig.
30% der Einladungen an Vertreter von s.E. (habe ich mal angenommen), oder
30% der V.s.E. werden eingeladen

> erstellen sie eine vollständiges baumdiagramm.

Ich denke es müssen zwei Stufen in das Diagramm.
1. Einladung an soz. : Ja/Nein
2. ist Anwesend : Ja/Nein

> ich sehe dass aber so ,das es hier um eine bedingte wahrscheinlichkeit geht. die wahrscheinlichkeit,dass ich unter denen die kommen einen vertreter der sozialen einrichtungen habe ist 27%.

Ja. Entspricht : P(soz. eingeladen und anwesend | anwesend)

> in der vorgegebenen lösung sagt man,dass die 27% die schnittwahrscheinlichkeit der ergebnisse t und s ist .

Man kann das so sehen :
S=Menge der Einladungen an Vertreter soz.E.
A=Menge der Anwesenden
Dann sind 27% der Teil [mm] $S\cap [/mm] A$ von A.
Also [mm] $P(S\cap [/mm] A | A)$

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]