www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisbeispiele zu komplexe zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - beispiele zu komplexe zahlen
beispiele zu komplexe zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beispiele zu komplexe zahlen: "Frage"
Status: (Frage) beantwortet Status 
Datum: 16:56 Mo 22.10.2007
Autor: Dagobert

hallo!

hätte ne frage zu den folgenden 3 bsp:

[Dateianhang nicht öffentlich]

zu 1. wegen dem hoch 28 und hoch 27, muss ich das ausmultiplizieren oder gibts da ne einfachere möglichkeit? weil hoch 28 ist schon aufwendig.

zu2. geht das so das ich die gleichung einfach durch z durchdividiere? dann hätte ich ne quadratische glg die ich dann lösen könnte?

zu3. einfach für z und z(strich) einsetzen oder? hab das gemacht und würde dann mal auf
[mm] x^2+2i^2y+2x-i^2y^1 \le [/mm] 2 kommen?

danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
beispiele zu komplexe zahlen: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 17:01 Mo 22.10.2007
Autor: Roadrunner

Hallo Dagobert!


Bitte nicht durch $z_$ teilen. Damit geht Dir eine Lösung verloren!! [aufgemerkt]

Aber $z_$ ausklammern darfst Du allemal. Und dann die quadratische Gleichung lösen - wie von Dir vorgeschlagen.


Gruß vom
Roadrunner


Bezug
                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 22.10.2007
Autor: Dagobert

hallo!
danke, dh ich klammere z  mal aus und erhalte:

z [mm] (z^2-2iz-(1+7i)) [/mm] = 0

dann die quadratische glg mit der p,q formel:

z1,2=2i/2 [mm] \pm \wurzel{(2i/2)^2+(1+7i)} [/mm] nur wie vereinfache ich dann unter der wurzel?

danke!


Bezug
                        
Bezug
beispiele zu komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mo 22.10.2007
Autor: leduart

Hallo Dagobert
Wie man die 2 kürzt und den Ausdruck unter der Wurzel auf die Form a+ib bringt, fragst du hoffentlich nicht.
Wie man komplexe Wurzeln zieht hatten wir doch ausführlich in deinem anderen thread über komplexe Zahlen.
Welche Frage bleibt offen?
Gruss leduart

Bezug
                                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Mo 22.10.2007
Autor: Dagobert

hallo!

ich würde dann auf den ausdruck:

z1,2 = -1+i/2 [mm] \pm (39,062*e^3,429+k2pi) [/mm] kommen???

danke!

Bezug
                                        
Bezug
beispiele zu komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Mo 22.10.2007
Autor: leduart

Hallo
Das ist unlesbar, aber sieht falsch aus was ist etwa k?
schreib einfach z1 auf in der Form a+ib oder [mm] r*e^{i\phi} [/mm]
wenn ich was kontrollieren soll, bitte nicht ungenaue Dezimalzahlen, sondern etwa [mm] \wurzel{7} [/mm] statt 2,646 usw.
Ergebnisse kannst du einfach durch Einsetzen in die ursprüngliche Gleichung nachprüfen, dazu brauchst du uns nicht, denn wir müssen dafür ja auch rechnen!
Gruss leduart

Bezug
        
Bezug
beispiele zu komplexe zahlen: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 22.10.2007
Autor: Roadrunner

Hallo Dagobert!


Forme wie folgt um:

$$z \ = \ [mm] \bruch{(1+4i)*(1+i)^{28}}{(-1+i)^{27}*(2+i)} [/mm] \ = \ [mm] \bruch{(1+4i)*(1+i)^{27}*(1+i)^1}{(-1+i)^{27}*(2+i)} [/mm] \ = \ [mm] \bruch{(1+4i)*(1+i)}{2+i}*\bruch{(1+i)^{27}}{(-1+i)^{27}} [/mm] \ = \ [mm] \bruch{(1+4i)*(1+i)}{2+i}*\left(\bruch{1+i}{-1+i}\right)^{27}$$ [/mm]
Nun bruchweise zusammenfassen und berechnen. Dabei den hinteren Bruch vor dem Potenzieren vereinfachen.


Gruß vom
Roadrunner


Bezug
                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 22.10.2007
Autor: Dagobert

hallo!

wenn ich den ersten teil mal vereinfache erhalte ich:

-3+5i/2+i * ((1+i)/(-1+i))^27

nur wie mache ich das jetzt mit dem hoch 27 zum vereinfachen?

danke!

Bezug
                        
Bezug
beispiele zu komplexe zahlen: erweitern
Status: (Antwort) fertig Status 
Datum: 18:44 Mo 22.10.2007
Autor: Roadrunner

Hallo Dagobert!


Erweitere die Brüche jeweils mit dem Konjugiertem des Nenners:

[mm] $$\bruch{-3+5i}{2+i}*\blue{\bruch{2-i}{2-i}} [/mm] \ = \ [mm] \bruch{(-3+5i)*(2-i)}{(2+i)*(2-i)} [/mm] \ = \ ...$$
[mm] $$\bruch{1+i}{-1+i}*\blue{\bruch{-1-i}{-1-i}} [/mm] \ = \ [mm] \bruch{(1+i)*(-1)*(1+i)}{(-1+i)*(-1-i)} [/mm] \ = \ ...$$

Gruß vom
Roadrunner


Bezug
                                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Mo 22.10.2007
Autor: Dagobert

hallo!
danke, dh wenn ich vereinfache komme ich auf

[-1/5+13/5*i] * (-i)^27   ??

also habe die beiden brüche getrennt vereinfacht wie oben beschrieben.

danke!

Bezug
                                        
Bezug
beispiele zu komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mo 22.10.2007
Autor: leduart

Hallo
richtig, jetzt noch das Ergebnis bestimmen und als a+ib aufschreiben.
Gruss leduart

Bezug
                                                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Mo 22.10.2007
Autor: Dagobert

i^27 ist ja -i

--> als ergebnis bekomme ich -13/5 - 1/5i

Bezug
                                                        
Bezug
beispiele zu komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mo 22.10.2007
Autor: leduart

Hallo
Falsch!
ein bissel sorgfältiger! -*-=+   i*i=-1
ausserdem ist es mühsam immer die alten posts wieder nachzusehen, also schreib nächstes Mal bitte die Ursprungsformel hin und nicht nur ein Resultat.
Gruss leduart

Bezug
        
Bezug
beispiele zu komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mo 22.10.2007
Autor: leduart

Hallo> hallo!
>  
> hätte ne frage zu den folgenden 3 bsp:
>  
> [Dateianhang nicht öffentlich]
>  
> zu 1. wegen dem hoch 28 und hoch 27, muss ich das
> ausmultiplizieren oder gibts da ne einfachere möglichkeit?
> weil hoch 28 ist schon aufwendig.

zeichne doch mal 1+i und die ersten paar Potenzen!  besser noch [mm] 1/\wurzel{2}*(1+i )^n [/mm] dann siehst du wie es läuft. dann kann man einiges Kürzen:
um die 3 Sachen auszurechnen musst du den Nenner reell machen, in dem du mit dem konj. komplexen des Nenners erweiterst.
sonst nimmt man zu potenzieren die Moivre Darstellung also [mm] Z=r^{i\phi} [/mm]
zu 3) du solltest dir angewöhnen [mm] i^2=-1 [/mm] einzusetzen!
und [mm] z*\overline{z}=|z|^2, [/mm] und hinten ist der 3te Summand = dem konj des zweiten Und es gilt:
[mm] z+\overline{z}=2*˜re(z) [/mm]
aber einfach einsetzen kannst du natürlich auch.
Aber dein Ergebnis ist so wies da steht falsch.
Gruss leduart

> zu2. geht das so das ich die gleichung einfach durch z
> durchdividiere? dann hätte ich ne quadratische glg die ich
> dann lösen könnte?
>  
> zu3. einfach für z und z(strich) einsetzen oder? hab das
> gemacht und würde dann mal auf
> [mm]x^2+2i^2y+2x-i^2y^1 \le[/mm] 2 kommen?
>  
> danke!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 22.10.2007
Autor: Dagobert

hallo!

zu3.

ich habe [mm] z\overline{z} [/mm] + (1+i)z + [mm] (1-i)\overline{z} [/mm] /le 2

dann setze ich für z und [mm] \overline{z} [/mm] ein:

(x+iy)(x-iy)+(1+i)(x+iy)+(1-i)(x-iy) /le 2

multipliziere aus:

[mm] x^2-ixy+ixy-i^2y^2+x+iy+ix+i^2y+x-iy-ix+i^2y [/mm] /le 2

[mm] x^2-i^2y^2+x+i^2y+x+i^2y [/mm] /le 2

[mm] x^2+2x+y^2-2y [/mm] /le 2

stimmt das soweit?

danke!

Bezug
                        
Bezug
beispiele zu komplexe zahlen: Okay
Status: (Antwort) fertig Status 
Datum: 18:25 Mo 22.10.2007
Autor: Infinit

Hallo Dagobert,
ja, das stimmt soweit. Noch ein Tipp am Rande: Das Produkt aus einer komplexen Zahl und ihrer konjugiert komplexen Zahl gibt immer was reelles und zwar die Summe aus den Quadraten von Real- und Imaginärteil (3. Binomische Formel).
Viele Grüße,
Infinit

Bezug
                                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Mo 22.10.2007
Autor: Dagobert

hallo!

da komm ich dann auf
[mm] x^2+2x-2 \le -y^2+2y [/mm]

nur da hab ich dann ein ^2 stehen, und muss ja auf y umformen oder?

danke!

Bezug
                                        
Bezug
beispiele zu komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 22.10.2007
Autor: leduart

Hallo
> hallo!
>  
> da komm ich dann auf
> [mm]x^2+2x-2 \le -y^2+2y[/mm]
>  
> nur da hab ich dann ein ^2 stehen, und muss ja auf y
> umformen oder?

ODER lass es so wie vorher stehen, [mm] x^2+y^2+...<2 [/mm] und überleg dir, was für ein Gebiet in der Ebene das ist, schreib erst mal =2  und denk an deinen Geometrieunterricht zurück!
Gruss leduart



Bezug
                                                
Bezug
beispiele zu komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Di 23.10.2007
Autor: Dagobert

hallo!
hätte das mit mathcad mal probiert bekomme aber dann sowas raus:

[Dateianhang nicht öffentlich]



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                                        
Bezug
beispiele zu komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Di 23.10.2007
Autor: Martinius

Hallo Dagobert,

was Du da mit Mathcad gerechnet hast, kann ich nicht beurteieln, aber mit einer quadratischen Ergänzung kannst Du deine Gleichung leicht umformen:

[mm] $x^{2}+2x+y^{2}-2y\le [/mm] 2$

[mm] $(x+1)^{2}-1+(y-1)^{2}-1\le [/mm] 2$

[mm] $(x+1)^{2}+(y-1)^{2}\le [/mm] 4$

Wenn ich mich nicht irre sind damit alle Punkte gemein, die auf dem Kreis oder innerhalb des Kreises mit Mittelpunkt M(-1/1) und Radius R = 2 liegen.

LG, Martinius

Bezug
                                                                
Bezug
beispiele zu komplexe zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Di 23.10.2007
Autor: Dagobert

danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]