www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikbernoulli-versuch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - bernoulli-versuch
bernoulli-versuch < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bernoulli-versuch: histogram
Status: (Frage) beantwortet Status 
Datum: 15:50 Di 13.12.2005
Autor: satanicskater

Aufgabe
Die Wahrscheinlichkeit für die Geburt eines Jungen bzw. eines Mädchens beträgt etwa 0,5.
a) In einem Krankenhaus werden an einem Tag 12 Kinder geboren.
    Wie groß ist die Wahrscheinlichkeit, dass es genau 6 jungen und 6        
    Mädchen sind?
b) Bestimme die Verteilung der Zufallsgröße X: Anzahl der Mädchen in einer
    Familie mit 4 Kindern.
c) Mit welcher Wahrscheinlichkeit sind in einer Familie mit 6 Kindern mehr
    Jungen als Mädchen?

so für bernoulli gibt es ja folgende formel :
                 P(X=k) =  [mm] \vektor{n \\ k} [/mm]  * [mm] p^{k} [/mm] * (p-1) ^{n-k}
                             RICHTIG??
so, nu zu a:
     n = 12
     p= 0,5
     k= 6
kann ich mit den werten rechnen??
dann bekomme ich ne wahrscheinlichkeit von 0,2255 , sprich : 22,55%

b):
wenn es kein mädchen gibt :
   n=4
   p= 0,5
  k=0               wahrscheinlichkeit: 6,25%
ein mädchen: 25%
2 mädchen : 37,5%
3 mädchen : 25%
4 mädchen : 6,25%

c): soo c verstehe ich überhaupt net^^.die wahrscheinlichkeit das es zb ein jungem mehr gibt is ja genau so hoch wie wenn es ein mädchen mehr gäbe oder? aber was soll ich denn rechnen? pder is das schon die antwort??

        
Bezug
bernoulli-versuch: Tipps
Status: (Antwort) fertig Status 
Datum: 22:13 Di 13.12.2005
Autor: informix

Hallo,
wieso Betreff: Histogramm? [verwirrt]

> Die Wahrscheinlichkeit für die Geburt eines Jungen bzw.
> eines Mädchens beträgt etwa 0,5.
>  a) In einem Krankenhaus werden an einem Tag 12 Kinder
> geboren.
>      Wie groß ist die Wahrscheinlichkeit, dass es genau 6
> jungen und 6        
> Mädchen sind?
>  b) Bestimme die Verteilung der Zufallsgröße X: Anzahl der
> Mädchen in einer
>      Familie mit 4 Kindern.
>  c) Mit welcher Wahrscheinlichkeit sind in einer Familie
> mit 6 Kindern mehr
> Jungen als Mädchen?
>  so für bernoulli gibt es ja folgende formel :
> P(X=k) =  [mm]\vektor{n \\ k}[/mm]  * [mm]p^{k}[/mm] * (p-1) ^{n-k}
>                               RICHTIG??

[notok]
$P(X=k) = [mm] \vektor{n\\k}* p^k [/mm] * [mm] (\red{1-p})^{n-k}$ [/mm]

>  so, nu zu a:
>       n = 12
> p= 0,5
>       k= 6
>  kann ich mit den werten rechnen??
>  dann bekomme ich ne wahrscheinlichkeit von 0,2255 , sprich
> : 22,55%

[ok] das ist richtig.

>  
> b):
>  wenn es kein mädchen gibt :
>     n=4
>     p= 0,5
>    k=0               wahrscheinlichkeit: 6,25%
>  ein mädchen: 25%
>  2 mädchen : 37,5%
>  3 mädchen : 25%
>  4 mädchen : 6,25%

[daumenhoch]

>  
> c): soo c verstehe ich überhaupt net^^.die
> wahrscheinlichkeit das es zb ein jungem mehr gibt is ja
> genau so hoch wie wenn es ein mädchen mehr gäbe oder? aber
> was soll ich denn rechnen? pder is das schon die antwort??

Ich welchen Fällen sind die Jungen denn in der Mehrheit?
bei 6 Kindern:
wenn es mehr als 3 Jungen gibt.
Stell also wieder eine Wkt-Tabelle auf für n=6 und addiere die letzten drei Wktn für X [mm] \ge [/mm] 4.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]