www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenbesondere Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - besondere Geraden
besondere Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

besondere Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 11.03.2008
Autor: claudi7

Aufgabe
Welche besonderen Geraden werden durch die Parametergleichungen beschrieben?
a) [mm] g:\vec{x}=t*\vektor{1 \\ 0 \\ 1} [/mm]
b) [mm] g:\vec{x}=t*\vektor{0 \\ 1 \\ 1} [/mm]
c)  [mm] g:\vec{x}=t*\vektor{1 \\ 1 \\ 1} [/mm]

b) habe ich gelöst: Winkelhalbierende zwischen  [mm] x_{2}-Achse [/mm] und [mm] x_{3}-Achse. [/mm]

a) soll Winkelhalbierende zwischen  [mm] x_{1}-Achse [/mm] und [mm] x_{3}-Achse [/mm] sein und ich versteh nicht warum.

Für c) ist die Lösung: Gerade, deren orthogonale Projektionen auf die Ebenen der Koordinatenachsen jeweils eine der entsprechenden Winkelhalbierenden ergibt.!!!!!????????


Kann mir bitte jemand die Lösung von a) und c) erklären?



        
Bezug
besondere Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Di 11.03.2008
Autor: Teufel

Hallo!

[Dateianhang nicht öffentlich]

Man sieht es vielleicht etwas schlecht ;) oben ist das Koordinatensystem zu a). Eigentlich solltest du a) auch hinkriegen, wenn du b) geschafft hast! Ich habe dir mal [mm] \vektor{1 \\ 0 \\ 1} [/mm] eingezeichnet. Von O geht man also eine Einheit in x-Richtung und danach eine in z-Richtung (oder halt umgedreht).
In y-Richtung wird nicht gegangen. Es ist das selbe, wie bei b, nur dass die Perspektive anders ist und es deshalb nicht so schön wie ein 45°-Winkel aussieht, sondern verzerrt.

Und das untere gehört zu c). Es ist hässlich, ich weiß ;) Aber stelle die mal den Punkt P(1|1|1) vor. Der Vektor [mm] \overrightarrow{OP} [/mm] wäre ja dann [mm] \vektor{1 \\ 1 \\ 1}. [/mm]
Und jetzt stell dir vor, dass du von P(1|1|1) aus eine Einheit senkrecht nach "hinten" gehst! Dann landest du im Punkt P'(0|1|1), da du ja eine Einheit entlang der negativen x-Achse gegangen bist.
Und in b) hast du festgestellt, dass Die Gerade mit [mm] \vektor{0 \\ 1 \\ 1} [/mm] Winkelhalbierende der y- und z-Achse ist. Das ist erstmal ein Punkt der Geraden aus c). Das kannst du auch mit allen anderen Punkten machen, z.B. Q(2|2|2) (soll ja noch anschaulich sein).
Wenn du Q senkrecht auf die y-z-Ebene projizierst, kommmst du auf Q'(0|2|2). Wenn du R(3|3|3) projizierst, kommst du auf R'(0|3|3) u.s.w.

Im Endeffekt erhälst du die Gerade, die du schon in b) hattest. Zeiche dir am besten die ganzen Punkte mal ein

Jetzt fehlen noch die 2 anderen Projektionen, also auf die x-y- Ebene und die x-z-Ebene, bei denen es sich genauso verhält! Da du b) ja am besten verstanden hast, hab ich mal versucht, die Aufgabe mit b) zu erläutern :) hoffe, dass es etwas gebracht hat. Ansonsten frag nochmal!

Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
Bezug
                
Bezug
besondere Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 Mi 12.03.2008
Autor: claudi7

Vielen Dank für deine ausführliche Antwort!!
Ich habe es verstanden :-)

.....und deine Skizzen sind doch bestens!

Bezug
                        
Bezug
besondere Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Mi 12.03.2008
Autor: Teufel

Ah ok :)

Freut mich!
Und ja, die 1. Skizze geht vielleicht noch, nur die 2. ist schlecht ;) Naja, hauptsache sie hat ihre arbeit getan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]