www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisbesselfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - besselfunktion
besselfunktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

besselfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Di 17.06.2008
Autor: balisto

Aufgabe
Sei [mm] z\in\IC, n\in\IR. [/mm] Die Funktion [mm] I_{n} [/mm] sei als koeffizient bei der Laurent-
Entwicklung der Funktion [mm] \alpha \mapsto e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})} [/mm] um Null definiert:
[mm] e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})} [/mm] = [mm] \summe_{n=-\infty}^{\infty}I_{n}(z)\alpha^{n} [/mm]
Zeigen Sie:
[mm] I_{n}(z) [/mm] = [mm] \bruch{1}{\pi}\integral_{0}^{\pi}{cos(nx-zsinx)dx} [/mm] = [mm] \summe_{k=0}^{\infty}\bruch{(-1)^{k}}{k!(n+k)!}(\bruch{z}{2})^{2k+n}. [/mm]  

Hallo,

Leider hab ich nicht die geringste Ahnung, wie ich an diese Aufgabe rangehen soll.
Wäre toll, wenn mir einer ein paar Tipps geben könnte!
Danke schonmal!

MfG
balisto

        
Bezug
besselfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Mi 18.06.2008
Autor: rainerS

Hallo!

> Sei [mm]z\in\IC, n\in\IR.[/mm] Die Funktion [mm]I_{n}[/mm] sei als
> koeffizient bei der Laurent-
>  Entwicklung der Funktion [mm]\alpha \mapsto e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})}[/mm]
> um Null definiert:
> [mm]e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})}=\summe_{n=-\infty}^{\infty}I_{n}(z)\alpha^{n}[/mm]
>  Zeigen Sie:
>  [mm]I_{n}(z)[=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(nx-zsinx)dx} = \summe_{k=0}^{\infty}\bruch{(-1)^{k}}{k!(n+k)!}(\bruch{z}{2})^{2k+n}.[/mm]
> Hallo,
>  
> Leider hab ich nicht die geringste Ahnung, wie ich an diese
> Aufgabe rangehen soll.
>  Wäre toll, wenn mir einer ein paar Tipps geben könnte!

Für das Integral würde ich es mal mit der Integraldarstellung der Koeffizienten einer Laurentreihe versuchen:

[mm] I_n(z) = \bruch{1}{2\pi i}\oint_\gamma \bruch{e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})}}{\alpha^{n+1}}d\alpha [/mm],

wobei [mm] $\gamma$ [/mm] eine geschlossene Kurve um 0 ist.

Die Summe am Schluss kannst du entweder durch Reihenentwicklung des Cosinus und gliedweise Integration oder aus der Reihenentwicklung der Exponentialfunktion ableiten:

[mm] e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})} = e^{\bruch{1}{2}z\alpha}*e^{-\bruch{1}{2}\bruch{z}{\alpha}} [/mm]

Die beiden e-Funktionen entwickelst du wie üblich, schreibst sie als Laurentreihen in [mm] $\alpha$ [/mm] und bildest dann das Cauchy-Produkt. Dich interessiert am Ende ja nur der Koeffizient des Terms [mm] $\alpha^n$. [/mm]

Übrigens: Alles, was du über Besselfunktionen wissen willst, findest du im Tabellenwerk von Abramowitz/Stegun, Besselfunktionen []hier.

Vorsicht: Dort heisst die Besselfunktion [mm] $J_n(z)$. $I_n(z)$ [/mm] bedeutet eine etwas andere, die sogenannte modifizierte Besselfunktion.

Viele Grüße
   Rainer

Bezug
                
Bezug
besselfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Mi 18.06.2008
Autor: balisto

Ah, ok. Vielen Dank!
Die Integraldarstellung hab ich jetzt hinbekommen.
Die Summe probier ich dann in Ruhe am Wochenende. Bei Fragen meld ich mich.
Nochmals Dankeschön.

MfG
balisto

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]