www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisbesselsche ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - besselsche ungleichung
besselsche ungleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

besselsche ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Mi 20.09.2006
Autor: Barncle

Hallo nochmal!

Also sei x [mm] \in [/mm] H.Dann gilt die Besselsche Ungleichung:

[mm] \summe_{i=1}^{\infty} ||^2 \le \parallel x \parallel^2 [/mm]

Hab jetzt auf Wiipedia gelesen, dass die Besselsche Ungleicung besagt, dass ein Vektor in eine Hilbertraum immer indestens so lang ist, wie seine Projektionen auf Unterräume.
Gut, das ist ja schonverständlich!
Es gibt da aber noch den Speialfall der Besselschen Ungleichung und zwar die Parsevalsche Ungleichungbei der [mm] \le [/mm] einfach durch = ersetzt wird. Laut Wikipedia ist das eine Form des Sat von Pythagoras.. aber warum! Wie kann denn eine Projektion auf einen Unterraum gleich lang sein wie der Vektor selbst? Das geht ja schon anschaulich im [mm] \IR^3 [/mm] garicht..

Bitte um enkastöße warum das trotzdem sein kann!

Danke

        
Bezug
besselsche ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:19 Fr 22.09.2006
Autor: choosy


> Hallo nochmal!
>  
> Also sei x [mm]\in[/mm] H.Dann gilt die Besselsche Ungleichung:
>  
> [mm]\summe_{i=1}^{\infty} ||^2 \le \parallel x \parallel^2[/mm]
>  

die [mm] $\phi_i$ [/mm] sollen wohl ein Orthonormalsystem bilden, sonst stimmt die aussage imho nicht

> Hab jetzt auf Wiipedia gelesen, dass die Besselsche
> Ungleicung besagt, dass ein Vektor in eine Hilbertraum
> immer indestens so lang ist, wie seine Projektionen auf
> Unterräume.
> Gut, das ist ja schonverständlich!
>  Es gibt da aber noch den Speialfall der Besselschen
> Ungleichung und zwar die Parsevalsche Ungleichungbei der
> [mm]\le[/mm] einfach durch = ersetzt wird. Laut Wikipedia ist das
> eine Form des Sat von Pythagoras.. aber warum! Wie kann
> denn eine Projektion auf einen Unterraum gleich lang sein
> wie der Vektor selbst? Das geht ja schon anschaulich im
> [mm]\IR^3[/mm] garicht..



Na das geht schon und zwar hat z.B. der erste einheitsvektor im [mm] $\IR^3$ [/mm] die gleiche Norm wie in dem von ihm aufgespannten Unterraum...

eine Zweite möglichkeit ist die das der Unterraum einfach der ganze Raum selbst ist. darauf zielt denke ich die Parseval identität ab, denn ist sie für jedes x erfüllt, so ist dies äquivalent dazu das die [mm] $\phi_i$ [/mm] eine Basis des ganzen Raumes bilden.

was sie mit dem Satz von pytagoras zu tun hat ist dir klar?
wenn nicht, dann schreib sie dir man für den [mm] $\IR^2$ [/mm] mit der standardbasis auf, und male ein Bild dazu.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]