www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationbest integral partielle integ.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - best integral partielle integ.
best integral partielle integ. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

best integral partielle integ.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 So 20.09.2009
Autor: katjap

Aufgabe
Berechnen Sie  [mm] \integral_{0}^{\infty}{x^{2}*e^{-x} dx} [/mm]

hallo!


Ich weiss wie man dieses Integral unbestimmt löst, habe jetzt nur das problem, dass ich nciht weiss, wie das bei der partiellen integration mit den grenzen läuft.

hier mein rechenweg:
= [mm] -x^{2}*e^{-x} [/mm] + [mm] \integral_{0}^{\infty}{2x*e^{-x} dx} [/mm]
= [mm] -x^{2}*e^{-x} [/mm] - [mm] 2x*e^{-x} [/mm] + [mm] \integral_{0}^{\infty}{2*e^{-x} dx} [/mm]

so, jetzt ist meine frage, ob das soweit stimmt,und ob das dann korrekt ist, wenn ich einfach nun beim letzten INtegral die grenzen einsetze,
dann gäbe es folgendes ergebnis:

[mm] -x^{2}*e^{-x} [/mm] - [mm] 2x*e^{-x} [/mm] -2

fuer eine hilfe hierbei wäre ich sehr dankbar, da es mir ums prinip mit partieller integration mit integrationsgrenzen geht.

danke

katja

        
Bezug
best integral partielle integ.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 So 20.09.2009
Autor: Al-Chwarizmi


> Berechnen Sie  [mm]\integral_{0}^{\infty}{x^{2}*e^{-x} dx}[/mm]
>
> Ich weiss wie man dieses Integral unbestimmt löst, habe
> jetzt nur das problem, dass ich nicht weiss, wie das bei
> der partiellen Integration mit den grenzen läuft.
>  
> hier mein rechenweg:
>  = [mm]-x^{2}*e^{-x}[/mm] + [mm]\integral_{0}^{\infty}{2x*e^{-x} dx}[/mm]
>  =
> [mm]-x^{2}*e^{-x}[/mm] - [mm]2x*e^{-x}[/mm] + [mm]\integral_{0}^{\infty}{2*e^{-x} dx}[/mm]
>  
> so, jetzt ist meine frage, ob das soweit stimmt

Ja, soweit stimmt's, aber warum führst du nicht
auch noch die letzte Integration durch ?

> und ob das
> dann korrekt ist, wenn ich einfach nun beim letzten
> Integral die grenzen einsetze,
> dann gäbe es folgendes ergebnis:
>  
> [mm]-x^{2}*e^{-x}[/mm] - [mm]2x*e^{-x}[/mm] - 2




Hallo katja,

die Grenzen müssen natürlich in den gesamten
Lösungsterm eingesetzt werden, nicht nur in
einen Teil davon. Dabei brauchst du insbesondere
noch die Grenzwerte  

    [mm] \limes_{x\to\infty}x*e^{-x} [/mm] und  [mm] \limes_{x\to\infty}x^2*e^{-x} [/mm]

Überdies hast du im Teil, bei dem du eingesetzt hast,
das falsche Vorzeichen.


LG    Al-Chw.

Bezug
                
Bezug
best integral partielle integ.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 So 20.09.2009
Autor: katjap

hm,

dann muesste es doch heissen:

[mm] -x^{2}*e^{-x} [/mm] - [mm] 2*x*e^{-x}+ [-2*e^{-x}] [/mm] (da man ja die stammfunktion noch bilden muss ist es negativ- die eckige klammer nun im von 0-> [mm] \infty [/mm]

also wäre die Lösung:

[mm] \limes_{x\rightarrow\infty} \bruch{x^{2}}{e^{x}} [/mm] -
[mm] \limes_{x\rightarrow\infty} \bruch{2x}{e^{x}} [/mm] - 2 = -2

oder?

danke fuer die hilfe auf jeden fall!


Bezug
                        
Bezug
best integral partielle integ.: nicht richtig
Status: (Antwort) fertig Status 
Datum: 14:43 So 20.09.2009
Autor: Loddar

Hallo Katja!


Dieses Ergebnis kann nicht richtig sein, da die Funktion [mm] $x^2*e^{-x}$ [/mm] im gesamten Definitionsbereich positiv ist. Daher kann kein negatives Ergebnis herauskommen.

Es kommt $+2_$ heraus.


Gruß
Loddar


Bezug
                                
Bezug
best integral partielle integ.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 So 20.09.2009
Autor: katjap

hm, ich werds nochmal ueberpruefen wo ich mich da genau vertan hab, wahrscheinlich irgendwo entweder einmal zuviel das -1mit rausgenommen, oder s beim der stammfunktion mal vergessen oder so.

danke fuers drueberschauen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]