www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungbestimmtes integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - bestimmtes integral
bestimmtes integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmtes integral: Was das bestimmte integral Ich
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 06.12.2004
Autor: beaniekin

Ein unbestimmtes Integral=Stammfunktion richtig oder?
was ist aber dann ein bestimmtes integral? Interalfunktion vielleicht?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
bestimmtes integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mo 06.12.2004
Autor: KristinaW

Hallo!
Mit Hilfe des Integrals lässt sich der Flächeninhalt einer Fläche ausrechnen.
Es gibt verschiedene Integrale:
einmal das unbestimmte Integral. Dabei hat man keine sogenannten Grenzen, von wo bis wo die Fläche geht.
Dann gibt es noch das bestimmte Integral. Da gibt es Grenzen, in denen die Fläche auszurechnen ist.
Bei jedem Itegral, was du ausrechnen willst, brauchst du die Stammfunktion.
[mm] \integral_{a}^{b} [/mm] {f(x) dx}
Für f(x) setzt du deine Gleichung ein und bildest die Stammfunktion. Bei einem bestimmten Integral musst du nun für a und b die "Grenzen" einsetzten. D.h. bei der Stammfunktion: für x erst b einsetzten und dann noch einmal a einsetzten, wobei du b - a rechnen musst, d.h. b einsetzten minus a einsetzten.

Integralfunktionen sind unbestimmte und bestimmte Integrale.
Ich hoffe, ich konnte deine Frage beantworten.
Liebe Grüße, Kristina

Bezug
        
Bezug
bestimmtes integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mo 06.12.2004
Autor: Marc

Hallo beaniekin,

[willkommenmr]

> Ein unbestimmtes Integral=Stammfunktion richtig oder?

Fast.
Unter einem unbestimmten Integral versteht man die Menge aller Stammfunktionen, also etwa

[mm] $F\in \integral [/mm] f(x) dx$

Unbestimmte Integrale erkennt man daran, dass die Integrationsgrenzen nicht angegeben sind.

>  was ist aber dann ein bestimmtes integral?

Ein bestimmtes Integral ist eines, bei dem die Grenzen angegeben sind

[mm] $\integral_a^b [/mm] f(x) dx$

>Interalfunktion

> vielleicht?

Eine MBIntegralfunktion ist ein bestimmtes Integral von f als Funktion der oberen Grenze

[mm] $I_{x_0}(x)=\integral_{x_0}^{x} [/mm] f(t) dt$

Es gilt übrigens: [mm] $I_{x_0}(x)\in \integral [/mm] f(x) dx$, d.h., jede Integralfunktion ist auch eine Stammfunktion (die Umkehrung gilt nicht: Es ist nicht jede Stammfunktion auch eine Integralfunktion.)

Ich hoffe, es ist so ein bisschen klarer geworden, falls nicht, frage einfach nach :-)

Viele Grüße,
Marc

Bezug
        
Bezug
bestimmtes integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Mo 06.12.2004
Autor: beaniekin

Jo, Jungs alles klar vielen Dank! Supi! Hab Klausur am Mittwoch! :-(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]