www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieborel-messbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - borel-messbar
borel-messbar < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

borel-messbar: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:50 Di 17.05.2011
Autor: simplify

Aufgabe
Es sei [mm] (\IR,\mathcal{A},\mu) [/mm] ein Maßraum mit
[mm] \mathcal{A}=\{ \IR,\emptyset,]-\infty,0],]0,\infty[\}, [/mm]
[mm] \mu (]-\infty,0]) [/mm] = 1, [mm] \mu (]0,\infty[) [/mm] = 1
Untersuche,welche der folgenden Funktionen (Borel-)messbar sund und bestimme ggf. ihr Integral.

(i) f : [mm] \IR \to [0,\infty[, f(x):=x^{2} [/mm]
(ii) f : [mm] \IR \to \IR, [/mm] f(x):=7, [mm] x\in]-\infty,0], [/mm] und f(x):=3, [mm] x\in[0,\infty.[ [/mm]

hallo,
ich weiß nicht so recht weiter bei der aufgabe, bzw. weiß ich nicht mit was genau ich argumentieren muss.
Borel-messbare funktionen sind funktionen,die stetig sind.
stetig ist eine funktionen,wenn ihr bild offen ist und ihr urbild ebenfalls.
richtig soweit?

bei (i) würde ich sagen,dass sowohl das bild als auch das urbild offen ist.die funktion ist stetig,aber nicht gleichmäßig stetig.hat das einfluss auf die messbarkeit?

ich weiß aich nicht genau,was ich mit den gegeben von [mm] \mathcal{A} [/mm] und [mm] \mu [/mm] anfangen soll.
ich glaube,so ganz blick ich da noch nicht durch.

        
Bezug
borel-messbar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Do 19.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]