charak. Funktion Chi-Quadrat < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] X_1, X_2, X_3, X_4 [/mm] seien i.i.d [mm] N(0,1) [/mm]-verteilte Zufallsvariablen. Berechnen Sie die charakteristischen Funktionen von
[mm] X_1*X_2 [/mm] und [mm] X_1*X_2+X_3*X_4 [/mm]. |
Hallo und danke schon einmal:
Also es gilt für [mm] X_1,\cdots, X_n [/mm] i.i.d [mm] N(0,1) [/mm]-verteilte Zufallsvariablen:
[mm] \summe_{k=1}^{n} X^2_k [/mm] ~ [mm] \chi^2_n [/mm]
Also gilt mit [mm] X_1*X_2 = X_1^2 [/mm]:
[mm] X_1*X_2 [/mm] ~ [mm] \chi^2_1
[/mm]
mit
[mm] f^{\chi^2_1} (x) = \bruch{1}{\wurzel{2*\pi*x}} * e^{-x/2} * \I1_{(0,\infty)} (x)[/mm]
Die charakteristische Funktion ist wie folgt definiert:
[mm] \varphi_X (t) = E e^{i*t*X} [/mm]
und damit:
[mm] \varphi_{X^2_1} (t) = \int_{0}^{\infty} e^{i*t*x}*\bruch{1}{\wurzel{2*\pi*x}} * e^{-x/2}\, dx = \bruch{1}{\wurzel{2*\pi}} * \int_{0}^{\infty} e^{(i*t - \bruch{1}{2})*x}*x^{-\bruch{1}{2}}\, dx[/mm]
Und hier liegt mein Problem:
Wie berechnet man [mm] \int_{0}^{\infty} e^{(i*t - \bruch{1}{2})*x}*x^{-\bruch{1}{2}}\, dx[/mm] ?
Ich habe keinen Weg gefunden und habe deswegen Wolfram|Alpha gefragt, was zugegeben, unseriös ist.
Aber nach ihm gilt:
[mm] \int_{0}^{\infty} e^{(i*t - \bruch{1}{2})*x}*x^{-\bruch{1}{2}}\, dx = \bruch{\wurzel{2*\pi}}{{\wurzel{1-2*i*t}}}[/mm]
Damit folgt:
[mm] \varphi_{X_1*X_2} (t) = \varphi_{X_3*X_4} (t) = \varphi_{X^2_1} (t) = \bruch{1}{{\wurzel{1-2*i*t}}}[/mm]
Ferner gilt:
[mm] \varphi_{ \summe_{k=1}^{n} X_k} (t) = \prod_{k=1}^{n}\varphi_{X_k} (t) [/mm]
und damit:
[mm] \varphi_{X_1*X_2+X_3*X_4} (t) = \varphi_{X_1^2} (t) * \varphi_{X_3^2} (t) = \bruch{1}{1-2*i*t}[/mm]
Ich glaube/hoffe, dass das alles soweit stimmt und es "nur" noch an dem Integral hängt und mir jemand helfen kann.
Und allen ein schönes Finalspiel ;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:30 So 11.07.2010 | Autor: | luis52 |
Moin
> Also gilt mit [mm]X_1*X_2 = X_1^2 [/mm]:
>
> [mm]X_1*X_2[/mm] ~ [mm]\chi^2_1[/mm]
>
Das ist falsch: [mm] $X_1^2$ [/mm] kann nur positive Werte annehmen, [mm] $X_1X_2$ [/mm] hingegen sowohl negative als auch positive.
vg Luis
|
|
|
|
|
Hmm, schade.
Also dann brauche ich einen Ansatz um die Dichte von zwei gleichverteilten Zufallsvariablen zu bestimmen. Im Skript kann ich nur Sachen über Summen finden.
Ich habe allerdings im Internet eine Gleichung gefunden, die ich mir nicht herleiten kann:
[mm] f_{X*Y} (z) = \int_{-\infty}^{\infty} \bruch{1}{|t|} f_X (t) * f_Y (\bruch{z}{t})\, dt [/mm]
Also mit
[mm] f_{X_1}(t) = f_{X_2}(t) [/mm]
folgt:
[mm] f_{X_1*X_2} (z) = \int_{-\infty}^{\infty} \bruch{1}{2*\pi*|t|} e^{\bruch{-t^2}{2}} * e^{\bruch{-(\bruch{z}{t})^2}{2}}\, dt [/mm]
Aufgrund der Symmetrie kann man daraus noch
[mm] f_{X_1*X_2} (z) = \bruch{1}{\pi}*\int_{0}^{\infty} \bruch{1}{|t|} e^{\bruch{-t^4-z^2}{2*t^2}}\, dt [/mm]
machen. Dann hört es aber auf und ich habe ehrlich gesagt keine Ahnung wie es weiter geht.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:07 Mo 12.07.2010 | Autor: | luis52 |
> Hmm, schade.
>
> Also dann brauche ich einen Ansatz um die Dichte
Wieso das? Du sollst doch die char. Funktion bestimmen.
> von zwei
> gleichverteilten Zufallsvariablen
Identisch verteilt, nicht gleichverteilt.
> zu bestimmen. Im Skript
> kann ich nur Sachen über Summen finden.
>
Schreib mal die Definitionsgleichung der CF fuer das Produkt auf. Faellt dir was auf?
vg Luis
|
|
|
|
|
Also noch einmal die Definition:
[mm] \varphi_X (t) = Ee^{i*t*X} = \int_{-\infty}^{\infty} e^{i*t*x}*f_X(x)\, dx [/mm]
Das macht in unserem Fall:
[mm] \varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2} = \int_{-\infty}^{\infty} e^{i*t*z}*f_{X_1*X_2}(z)\, dz [/mm]
und mit der oben erwähnten Gleichung macht das:
[mm] \varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2} = \int_{-\infty}^{\infty} e^{i*t*z}*\int_{-\infty}^{\infty} \bruch{1}{2\cdot{}\pi\cdot{}|x|} e^{\bruch{-x^2}{2}} \cdot{} e^{\bruch{-(\bruch{z}{x})^2}{2}}\, dx\, dz [/mm]
[mm] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bruch{1}{2\cdot{}\pi\cdot{}|x|} e^{i*t*z}*e^{\bruch{-x^2}{2}} \cdot{} e^{\bruch{-(\bruch{z}{x})^2}{2}}\, dx\, dz [/mm]
Könnte man nun Fubini anwenden und das Integral ersteinmal nach [mm]z[/mm] auflösen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:36 Di 13.07.2010 | Autor: | luis52 |
> Also noch einmal die Definition:
>
> [mm]\varphi_X (t) = Ee^{i*t*X} = \int_{-\infty}^{\infty} e^{i*t*x}*f_X(x)\, dx[/mm]
>
> Das macht in unserem Fall:
>
> [mm]\varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2} = \int_{-\infty}^{\infty} e^{i*t*z}*f_{X_1*X_2}(z)\, dz[/mm]
>
> und mit der oben erwähnten Gleichung macht das:
>
> [mm]\varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2} = \int_{-\infty}^{\infty} e^{i*t*z}*\int_{-\infty}^{\infty} \bruch{1}{2\cdot{}\pi\cdot{}|x|} e^{\bruch{-x^2}{2}} \cdot{} e^{\bruch{-(\bruch{z}{x})^2}{2}}\, dx\, dz[/mm]
>
Hatte eher an
[mm] $\varphi_{X_1*X_2} [/mm] (t) = [mm] Ee^{i*t*X_1*X_2}=\int\int [/mm] i t [mm] x_1x_2\frac{1}{2\pi}e^{-x_1^2/2}e^{-x_2^2/2}\,dx_1\,dx_2$.
[/mm]
gedacht.
vg Luis
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 06:45 Di 13.07.2010 | Autor: | felixf |
Moin
> > und mit der oben erwähnten Gleichung macht das:
> >
> > [mm]\varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2} = \int_{-\infty}^{\infty} e^{i*t*z}*\int_{-\infty}^{\infty} \bruch{1}{2\cdot{}\pi\cdot{}|x|} e^{\bruch{-x^2}{2}} \cdot{} e^{\bruch{-(\bruch{z}{x})^2}{2}}\, dx\, dz[/mm]
> >
>
> Hatte eher an
> [mm]\varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2}=\int\int i t x_1x_2\frac{1}{2\pi}e^{-x_1^2/2}e^{-x_2^2/2}\,dx_1\,dx_2[/mm].
>
> gedacht.
Um das etwas allgemeiner hinzuschreiben:
das ist doch $E(g(Z)) = [mm] E(g(X_1, X_2))$, [/mm] wobei $Z := [mm] (X_1, X_2)$ [/mm] ein Zufallsvektor ist und $g : [mm] \IR^2 \to \IR$ [/mm] die Funktion $g(x, y) = [mm] e^{i t x y}$. [/mm] Und den Erwartungswert von $g(Z)$ rechnest du doch aus, indem du [mm] $\int [/mm] g(z) [mm] f_Z(z) [/mm] dz = [mm] \int \int [/mm] g(x, y) [mm] f_Z(x, [/mm] y) dx dy$ ausrechnest (mit $z = (x, y)$), und nicht indem du erst die Dichte von $f(Z)$ bestimmst. Und hier ist [mm] $f_Z(x, [/mm] y) = [mm] f_{X_1}(x) f_{X_2}(y)$ [/mm] da [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] unabhaengig sind.
(Wenn du fuer die Varianz von $X$ den Erwartungswert [mm] $E(X^2)$ [/mm] bestimmen willst, bestimmst du nicht auch erst die Dichte von [mm] $X^2$ [/mm] und rechnest [mm] $\int [/mm] x [mm] f_{X^2}(x) [/mm] dx$ aus, sondern [mm] $\int x^2 f_X(x) [/mm] dx$.)
LG Felix
|
|
|
|
|
> Moin
>
> > > und mit der oben erwähnten Gleichung macht das:
> > >
> > > [mm]\varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2} = \int_{-\infty}^{\infty} e^{i*t*z}*\int_{-\infty}^{\infty} \bruch{1}{2\cdot{}\pi\cdot{}|x|} e^{\bruch{-x^2}{2}} \cdot{} e^{\bruch{-(\bruch{z}{x})^2}{2}}\, dx\, dz[/mm]
> > >
> >
> > Hatte eher an
> > [mm]\varphi_{X_1*X_2} (t) = Ee^{i*t*X_1*X_2}=\int\int i t x_1x_2\frac{1}{2\pi}e^{-x_1^2/2}e^{-x_2^2/2}\,dx_1\,dx_2[/mm].
>
> >
> > gedacht.
>
> Um das etwas allgemeiner hinzuschreiben:
>
> das ist doch [mm]E(g(Z)) = E(g(X_1, X_2))[/mm], wobei [mm]Z := (X_1, X_2)[/mm]
> ein Zufallsvektor ist und [mm]g : \IR^2 \to \IR[/mm] die Funktion
> [mm]g(x, y) = e^{i t x y}[/mm]. Und den Erwartungswert von [mm]g(Z)[/mm]
> rechnest du doch aus, indem du [mm]\int g(z) f_Z(z) dz = \int \int g(x, y) f_Z(x, y) dx dy[/mm]
> ausrechnest (mit [mm]z = (x, y)[/mm]), und nicht indem du erst die
> Dichte von [mm]f(Z)[/mm] bestimmst. Und hier ist [mm]f_Z(x, y) = f_{X_1}(x) f_{X_2}(y)[/mm]
> da [mm]X_1[/mm] und [mm]X_2[/mm] unabhaengig sind.
>
Ich suche genau nach eine Berechtigung dieses zu tun, ich habe mein Skript von oben bis unten gewälzt, aber ich finde nichts.
Wieso ist [mm]f_Z(x, y) = f_{X_1}(x) f_{X_2}(y)[/mm] ?
Vllt hilft das meinem Verständnis:
[mm]Z := (X_1, X_2)[/mm] okay
Wir haben einen Satz der besagt:
[mm] Satz: [/mm]
Es sind äquivalent:
i.) [mm]\left(X_i\right)_{i\in I}[/mm] ist unabhängig
ii.) [mm]P^X = \otimes_{i\in I} P^{X_i} [/mm]
Sollte die wirklich heißen das, wenn [mm]X = \left(X_1,\cdots,X_n \right) [/mm]
und [mm] X_i [/mm] unabhängig, das dann
[mm]P^X = \prod_{i=1}^{n}P^{X_i} [/mm] ?
Ich dachte immer das gilt nur bei Schnitten!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:16 Di 13.07.2010 | Autor: | vivo |
Hallo,
na klar gilt das!
Wenn du dir anschaust welche [mm] $\omega \in \Omega$ [/mm] enthalten sind ist es ja auch ein Schnitt.
Gruß
|
|
|
|
|
AHA, da macht das ganze Skript doch gleich viel mehr Sinn!
Danke.
Okay dann noch einmal von vorn:
Sei $Z := ( [mm] X_1 [/mm] , [mm] X_2 [/mm] )$ und [mm] $X_1,X_2$ [/mm] seien i.i.d $ N(0,1) $ verteilt.
Dann gilt:
$ [mm] \varphi_Z [/mm] (t) = E [mm] e^{i\cdot{}t\cdot{}Z}= \int_{-\infty}^{\infty} e^{i\cdot{}t\cdot{}z}\cdot{}f_{Z}(z)\, [/mm] dz $
Da $ [mm] X_1 [/mm] $ und $ [mm] X_2 [/mm] $ unabhängig, gilt:
$ [mm] f_{Z}(z) [/mm] = [mm] f_{Z}(x_1*x_2) [/mm] = [mm] f_{X_1}(x_1)*f_{X_2}(x_2) [/mm] $
und somit:
$ [mm] \varphi_Z [/mm] (t) = [mm] \varphi_{X_1*X_2} [/mm] (t) = [mm] \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*f_{X_1}(x_1)*f_{X_2}(x_2) \, dx_1 \, dx_2 [/mm] $
$ = [mm] \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*\bruch{1}{2*\pi}*e^{-\bruch{x_1^2}{2}}*e^{-\bruch{x_2^2}{2}} \, dx_1 \, dx_2 [/mm] $
$ = [mm] \bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*e^{-\bruch{x_1^2}{2}}\, dx_1 \, dx_2 [/mm] $
Nun habe ich wieder meine Probleme, das Integral ist doch recht schwer. Laut Internet gibt es wohl auch keine "normale" Stammfunktion, also wie soll ich es ermitteln?
Nach Wolfram|Alpha gilt:
$ [mm] \int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*e^{-\bruch{x_1^2}{2}}\, dx_1 [/mm] = [mm] \wurzel{2*\pi}*e^{-\bruch{t^2*x_2^2}{2}} [/mm] $
also ist
$ [mm] \bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*e^{-\bruch{x_1^2}{2}}\, dx_1 \, dx_2 [/mm] = [mm] \bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \wurzel{2*\pi}*e^{-\bruch{t^2*x_2^2}{2}} \, dx_2 [/mm] $
und wiederrum nach Wolfram|Alpha erhalten wir:
$ [mm] \varphi_{X_1*X_2} [/mm] (t) = [mm] \bruch{1}{\wurzel{t+1}} [/mm] $
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:18 Mi 14.07.2010 | Autor: | felixf |
Moin!
> AHA, da macht das ganze Skript doch gleich viel mehr Sinn!
> Danke.
>
> Okay dann noch einmal von vorn:
>
> Sei [mm]Z := ( X_1 , X_2 )[/mm] und [mm]X_1,X_2[/mm] seien i.i.d [mm]N(0,1)[/mm]
> verteilt.
>
> Dann gilt:
>
> [mm]\varphi_Z (t) = E e^{i\cdot{}t\cdot{}Z}= \int_{-\infty}^{\infty} e^{i\cdot{}t\cdot{}z}\cdot{}f_{Z}(z)\, dz[/mm]
>
> Da [mm]X_1[/mm] und [mm]X_2[/mm] unabhängig, gilt:
>
> [mm]f_{Z}(z) = f_{Z}(x_1*x_2) = f_{X_1}(x_1)*f_{X_2}(x_2)[/mm]
>
> und somit:
>
> [mm]\varphi_Z (t) = \varphi_{X_1*X_2} (t) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*f_{X_1}(x_1)*f_{X_2}(x_2) \, dx_1 \, dx_2 [/mm]
>
> [mm]= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*\bruch{1}{2*\pi}*e^{-\bruch{x_1^2}{2}}*e^{-\bruch{x_2^2}{2}} \, dx_1 \, dx_2 [/mm]
>
> [mm]= \bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*e^{-\bruch{x_1^2}{2}}\, dx_1 \, dx_2 [/mm]
> Nun habe ich wieder meine Probleme, das Integral ist doch
> recht schwer. Laut Internet gibt es wohl auch keine
> "normale" Stammfunktion, also wie soll ich es ermitteln?
Nun, setze $s := t [mm] x_2$. [/mm] Dann ist das innere Integral gleich [mm] $\int e^{i s x_1} ^{-\frac{x_1^2}{2}} dx_1 [/mm] = [mm] \sqrt{2 \pi} E(e^{i s X_1})$. [/mm] Aber das ist gerade das [mm] $\sqrt{2 \pi}$-fache [/mm] der charakteristische Funktion von [mm] $X_1$ [/mm] an der Stelle $s = t [mm] x_2$, [/mm] und dies ist [mm] $\sqrt{2 \pi} e^{-s^2/2} [/mm] = [mm] \sqrt{2 \pi} e^{-t^2 x_2^2/2}$.
[/mm]
> also ist
>
>
> [mm]\bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*e^{-\bruch{x_1^2}{2}}\, dx_1 \, dx_2 = \bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \wurzel{2*\pi}*e^{-\bruch{t^2*x_2^2}{2}} \, dx_2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Das kannst du noch vereinfachen zu $\int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi} e^{-(1 + t^2) x_2^2/2} dx_2$. Hier kannst du jetzt eine Substitution $z = \sqrt{1 + t^2} x_2$ machen; es ist $dx_2 = \frac{1}{\sqrt{1 + t^2}} dz$, also ist das Integral gleich $\frac{1}{\sqrt{1 + t^2}} \int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi}} e^{-z^2} dz = \frac{1}{\sqrt{1 + t^2}} E(1) = \frac{1}{\sqrt{1 + t^2}}$.
> und wiederrum nach Wolfram|Alpha erhalten wir:
>
> [mm]\varphi_{X_1*X_2} (t) = \bruch{1}{\wurzel{t+1}}[/mm]
Warum Wolfram|Alpha das [mm] $t^2$ [/mm] da nicht hat weiss ich nicht...
LG Felix
|
|
|
|
|
> Moin!
>
> > AHA, da macht das ganze Skript doch gleich viel mehr Sinn!
> > Danke.
> >
> > Okay dann noch einmal von vorn:
> >
> > Sei [mm]Z := ( X_1 , X_2 )[/mm] und [mm]X_1,X_2[/mm] seien i.i.d [mm]N(0,1)[/mm]
> > verteilt.
> >
> > Dann gilt:
> >
> > [mm]\varphi_Z (t) = E e^{i\cdot{}t\cdot{}Z}= \int_{-\infty}^{\infty} e^{i\cdot{}t\cdot{}z}\cdot{}f_{Z}(z)\, dz[/mm]
>
> >
> > Da [mm]X_1[/mm] und [mm]X_2[/mm] unabhängig, gilt:
> >
> > [mm]f_{Z}(z) = f_{Z}(x_1*x_2) = f_{X_1}(x_1)*f_{X_2}(x_2)[/mm]
> >
> > und somit:
> >
> > [mm]\varphi_Z (t) = \varphi_{X_1*X_2} (t) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*f_{X_1}(x_1)*f_{X_2}(x_2) \, dx_1 \, dx_2[/mm]
>
> >
> > [mm]= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*\bruch{1}{2*\pi}*e^{-\bruch{x_1^2}{2}}*e^{-\bruch{x_2^2}{2}} \, dx_1 \, dx_2[/mm]
>
> >
> > [mm]= \bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*e^{-\bruch{x_1^2}{2}}\, dx_1 \, dx_2[/mm]
>
>
>
> > Nun habe ich wieder meine Probleme, das Integral ist doch
> > recht schwer. Laut Internet gibt es wohl auch keine
> > "normale" Stammfunktion, also wie soll ich es ermitteln?
>
> Nun, setze [mm]s := t x_2[/mm]. Dann ist das innere Integral gleich
> [mm]\int e^{i s x_1} ^{-\frac{x_1^2}{2}} dx_1 = \sqrt{2 \pi} E(e^{i s X_1})[/mm].
> Aber das ist gerade das [mm]\sqrt{2 \pi}[/mm]-fache der
> charakteristische Funktion von [mm]X_1[/mm] an der Stelle [mm]s = t x_2[/mm],
> und dies ist [mm]\sqrt{2 \pi} e^{-s^2/2} = \sqrt{2 \pi} e^{-t^2 x_2^2/2}[/mm].
>
> > also ist
> >
> >
> >
> [mm]\bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \int_{-\infty}^{\infty}e^{i*t*x_1*x_2}*e^{-\bruch{x_1^2}{2}}\, dx_1 \, dx_2 = \bruch{1}{2*\pi}*\int_{-\infty}^{\infty}e^{-\bruch{x_2^2}{2}} \wurzel{2*\pi}*e^{-\bruch{t^2*x_2^2}{2}} \, dx_2[/mm]
>
> Das kannst du noch vereinfachen zu [mm]\int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi} e^{-(1 + t^2) x_2^2/2} dx_2[/mm].
> Hier kannst du jetzt eine Substitution [mm]z = \sqrt{1 + t^2} x_2[/mm]
> machen; es ist [mm]dx_2 = \frac{1}{\sqrt{1 + t^2}} dz[/mm], also ist
> das Integral gleich [mm]\frac{1}{\sqrt{1 + t^2}} \int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi}} e^{-z^2} dz = \frac{1}{\sqrt{1 + t^2}} E(1) = \frac{1}{\sqrt{1 + t^2}}[/mm].
Müßte da nicht
[mm]\frac{1}{\sqrt{1 + t^2}} \varphi_{X} (0) = \frac{1}{\sqrt{1 + t^2}}[/mm]
stehen?
>
> > und wiederrum nach Wolfram|Alpha erhalten wir:
> >
> > [mm]\varphi_{X_1*X_2} (t) = \bruch{1}{\wurzel{t+1}}[/mm]
>
> Warum Wolfram|Alpha das [mm]t^2[/mm] da nicht hat weiss ich
> nicht...
>
> LG Felix
>
Aber schöner Ansatz, wenn man es sieht, dann leuchtet es ein, aber die Idee muss man erstmal haben. Ich danke euch recht herzlich!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:20 Mi 14.07.2010 | Autor: | felixf |
Moin!
> > Das kannst du noch vereinfachen zu [mm]\int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi} e^{-(1 + t^2) x_2^2/2} dx_2[/mm].
> > Hier kannst du jetzt eine Substitution [mm]z = \sqrt{1 + t^2} x_2[/mm]
> > machen; es ist [mm]dx_2 = \frac{1}{\sqrt{1 + t^2}} dz[/mm], also ist
> > das Integral gleich [mm]\frac{1}{\sqrt{1 + t^2}} \int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi}} e^{-z^2} dz = \frac{1}{\sqrt{1 + t^2}} E(1) = \frac{1}{\sqrt{1 + t^2}}[/mm].
>
> Müßte da nicht
>
> [mm]\frac{1}{\sqrt{1 + t^2}} \varphi_{X} (0) = \frac{1}{\sqrt{1 + t^2}}[/mm]
>
> stehen?
Es ist doch [mm] $\varphi_X(0) [/mm] = [mm] E(e^{0 \cdot i \cdot X}) [/mm] = [mm] E(e^0) [/mm] = E(1)$.
LG Felix
|
|
|
|