www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigescharakteristisches Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - charakteristisches Polynom
charakteristisches Polynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Unklarheit
Status: (Frage) beantwortet Status 
Datum: 23:11 Do 09.12.2010
Autor: mathe-thomas

Aufgabe
Man hat eine eine reelle 2x2-Matrix. Kann diese ein komplexes charakteristisches Polynom haben?

Hallo,

meine Frage steht oben. Mir ist klar, dass jedes Polynom aus [mm] \IR[X] [/mm] auch in [mm] \IC[X] [/mm] ist, aber kann das charakteristische Polynom einer Matrix mit reellen Einträgen auch in [mm] \IC[X] [/mm] \ [mm] \IR[X] [/mm] sein?

Danke schonmal für alle Hilfestellungen.
Gruß,
Thomas



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Do 09.12.2010
Autor: max3000

Das Polynom an sich nicht, aber dessen Lösung.
Für eine 2x2-Matrix bekommst du ein Polynom 2. Grades als charakteristische Funktion und die kann ja 2 (konjugiert) komplexe Nullstellen haben.

Oder versteh ich hier ewas falsch? Eigentlich ist doch die charakteristische Funktion immer ein Polynom mit reellen Koeffizienten.



Bezug
                
Bezug
charakteristisches Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:41 Fr 10.12.2010
Autor: mathe-thomas

ja, hätte ich auch so gesagt aber war mir nicht mehr ganz sicher ob das polynom theoretisch doch komplex sein kann...
danke für deine antwort!

Bezug
        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Fr 10.12.2010
Autor: fred97


> Man hat eine eine reelle 2x2-Matrix. Kann diese ein
> komplexes charakteristisches Polynom haben?
>  Hallo,
>  
> meine Frage steht oben. Mir ist klar, dass jedes Polynom
> aus [mm]\IR[X][/mm] auch in [mm]\IC[X][/mm] ist, aber kann das
> charakteristische Polynom einer Matrix mit reellen
> Einträgen auch in [mm]\IC[X][/mm] \ [mm]\IR[X][/mm] sein?

Die Frage kannst Du Dir doch selbst beantworten !!

Ist $A= [mm] \pmat{ a & b \\ c & d }$ [/mm]  mit a,b,c,d [mm] \in \IR, [/mm] so berechne doch mal

              [mm] $p(\lambda):=det(A- \lambda [/mm] E)$

Kann p komplexe  nicht-reelle  Koeffizienten haben ?

FRED


>  
> Danke schonmal für alle Hilfestellungen.
>  Gruß,
>  Thomas
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]