d(log f) < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:44 Di 23.05.2006 | Autor: | u.spank |
Aufgabe | Wie muss man eine numerische Integration d(log f) durchführen? |
Hallo Helfer
Mein Problem ist: Flux=Covariance= [mm] \integral_{0}^{ \infty}{f*Co(f) d(log f)} [/mm] (Eq.1) wobei Co(f) für das Cospectrum und f für die Frequenz steht. Ich habe das Cospectrum mittels einer Fast- Fouier- Transformation berechnet und erhalte Flux=Covariance= [mm] \integral_{0}^{ \infty}{Co(f) df)} [/mm] (Eq.2) laut zahlreicher Puplicationen z.B. Eugster 1995, Grünwald 2002 muss aber auch Eq.1 richtig sein. Ich habe keine Ahnung was unter d(log f) zu verstehen ist. Meine Versuche d(log f) als [mm] \Delta [/mm] (log f) = [mm] log(f_{2})-log(f_{1}) [/mm] führten nicht zum Erfolg. Kann mir jemand Helfen und mir das erklären?
Danke für Eure Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo u.spank,
Das ist imho eine abkürzende Schreibweise für die Substitutionsregel.
[mm] \integral_{0}^{ \infty}{Co(f) df)}
[/mm]
u=log f
[mm] \bruch{du}{df}=\bruch{1}{f}
[/mm]
[mm] \integral_{0}^{ \infty}{Co(f) df)}=\integral_{0}^{ \infty}f*{Co(f) df*\bruch{du}{df})}=....
[/mm]
Das einzige was dabei nicht passt sind die offenbar falsch substituierten Integrationsgrenzen.
viele Grüße
mathemaduenn
> Mein Problem ist: Flux=Covariance= [mm]\integral_{0}^{ \infty}{f*Co(f) d(log f)}[/mm]
> (Eq.1) wobei Co(f) für das Cospectrum und f für die
> Frequenz steht. Ich habe das Cospectrum mittels einer
> Fast- Fouier- Transformation berechnet und erhalte
> Flux=Covariance= [mm]\integral_{0}^{ \infty}{Co(f) df)}[/mm] (Eq.2)
> laut zahlreicher Puplicationen z.B. Eugster 1995, Grünwald
> 2002 muss aber auch Eq.1 richtig sein. Ich habe keine
> Ahnung was unter d(log f) zu verstehen ist. Meine Versuche
> d(log f) als [mm]\Delta[/mm] (log f) = [mm]log(f_{2})-log(f_{1})[/mm] führten
> nicht zum Erfolg. Kann mir jemand Helfen und mir das
> erklären?
>
> Danke für Eure Hilfe
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:32 Sa 27.05.2006 | Autor: | u.spank |
Danke, das hilft mir schon mal weiter... Danke
|
|
|
|