www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikdas galton-modell
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - das galton-modell
das galton-modell < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

das galton-modell: erklärung
Status: (Frage) beantwortet Status 
Datum: 15:17 Mo 25.08.2008
Autor: mef

hallo zusammen,
wir haben heute das galton-modell durchgenommen .
haben dazu was aufbekommen.
undzwar geht es ja hierbei darum, dass die kügelchen in unserem beispiel für den ersten schacht 8 mal nach rechts und 0 mal nach links müssen damit sie in den 1. b.z.w.0.
schacht fallen.( 8 schächte sind es plus die aüßersten,sind durchnummeriert von 0-9)

wir sollen nun die wahrscheinlichkeiten für die einzelnen schachte berechnen.

dafür muss man die formel [mm] \vektor{n \\ k} [/mm] verwenden.
aber muss ich dann zum beispiel für den 3 schacht nicht noch die anzahl um wieviel die kugel nach rechts und nach links gefallen ist angeben sowie bei den lottospielen?



für eine erklärung  wäre ich echt dankbar
und auch wenn ihr mir schon  das ziel oder die formel die dahinter steckt, verratet:)

gruß mef

        
Bezug
das galton-modell: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Mo 25.08.2008
Autor: M.Rex

Hallo

Bezeichne mal mit n die Anzahl der Schächte (Hier also 10 - von 0-9 nummeriert) in die die Kugeln fallen können und mit k die Anzahl er Verzweigungen, an denen die  Kugel nach rechts fällt.

Für den ersten Fall (Fach 0) muss die dann 0-mal nach rechts fallen.
Um in zweiten Fach (1) zu landen muss die Kugel einmal nach rechts fallen. Ob das nun an Anfang der 10 Stufen passiert, oder am Ende ist egal, wichtig ist, dass sie nur einmal nach rechts gefallen ist, und das ist ja identisch mit der Lottoziehung, wo es auch nur darauf ankommt, ob eine Kugel gezogen wird.
Also muss die Kugel in Fach 1 genau einmal (von 10) nach rechts fallen, Und diese anzahl der möglichen Wege bestimmt man mit [mm] \vektor{10\\1} [/mm]

Und genauso ergeben sich dann die weiteren Verteilungen.

Hilft das erstmal weiter?

Marius

Bezug
                
Bezug
das galton-modell: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:32 Mo 25.08.2008
Autor: mef

ja ,danke
jetzt bin ich mir sicher , dass ich es verstanden hab.

nun würde ich gerne wissen , ob da eine weitere formel dahinter steckt, worauf dieeses experiment uns führen wird.

wenn ja, könnte es mir einer bitte erklären?

Bezug
                        
Bezug
das galton-modell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Di 26.08.2008
Autor: mef

ok, ist schon erledigt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]