www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnung"der weg" einer funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - "der weg" einer funktion
"der weg" einer funktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"der weg" einer funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 Sa 23.02.2013
Autor: bquadrat

Aufgabe
Keine Aufgabe, reine frage aus Interesse!

Wenn ich eine Funktion [mm] f(x)=x^{3}-2x^{2}-x+2 [/mm] habe und ich möchte herausfinden, "welchen weg" sie auf dem Definitionsbereich von -2 bis 3 zurücklegt, wie rechne ich sowas dann aus? Bei einer linearen Funktion ist das ja ganz einfach, da kann ich ja (wenn ich nicht falsch liege) [mm] \wurzel{x^{2}+f(x)^{2}} [/mm] berechnen und damit ist es fertig. Bei Funktionen höheren grades bin ich mir wegen der Krümmung nicht sicher. Kann mir bitte jemand weiterhelfen?
LG
Bquadrat

        
Bezug
"der weg" einer funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:54 Sa 23.02.2013
Autor: Fulla

Hallo [mm]b^2[/mm]!

> Keine Aufgabe, reine frage aus Interesse!
>  Wenn ich eine Funktion [mm]f(x)=x^{3}-2x^{2}-x+2[/mm] habe und ich
> möchte herausfinden, "welchen weg" sie auf dem
> Definitionsbereich von -2 bis 3 zurücklegt, wie rechne ich
> sowas dann aus? Bei einer linearen Funktion ist das ja ganz
> einfach, da kann ich ja (wenn ich nicht falsch liege)
> [mm]\wurzel{x^{2}+f(x)^{2}}[/mm] berechnen und damit ist es fertig.
> Bei Funktionen höheren grades bin ich mir wegen der
> Krümmung nicht sicher. Kann mir bitte jemand
> weiterhelfen?
>  LG
>  Bquadrat

Die entsprechende Formel findest du []hier.

In der Differentialgeometrie liegen Kurven oft in der Form [mm](x(t);y(t))[/mm] vor, wobei die Koordinaten der Kurvenpunkte die Werte der Funktionen x(t), bzw. y(t) sind. Man spricht da von einer Parametrisierung. Es gibt verschiedene (unendlich viele) Parametrisierungen für ein und dieselbe Kurve.

Bei deiner Funktion wäre [mm]x(t)=t[/mm] und [mm]y(t)=t^3-2t^2-t+2[/mm]. Für die Länge der Kurve im Intervall [-2;3] gilt [mm]L=\int_{-2}^3\sqrt{x'^2(t)+y'^2(t)}dt=\int_{-1}^3\sqrt{1 + y'^2(t)}dt[/mm] (siehe Formel im Link).

Das darf man machen, wenn die Kurve "regulär parametrisiert" ist, d.h. für kein t im Definitionsbereich gilt x'(t)=0 und y'(t)=0 (und das ist offensichtlich bei allen Graphen von Funktionen der Fall, da x'(t)=1).


Lieben Gruß,
Fulla


Bezug
                
Bezug
"der weg" einer funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Sa 23.02.2013
Autor: bquadrat

Ah okay Dankeschön :) hätte noch eine Frage. Könnte ich berechnen an welcher stelle x die kurve z.b. 5cm lang ist, wenn sie bei 0 startete, bzw:
[mm] L=5=\integral_{0}^{b}{\wurzel{1+(f'(x))^{2}} dx} [/mm]
?

Bezug
                        
Bezug
"der weg" einer funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Sa 23.02.2013
Autor: Diophant

Hallo,

> Ah okay Dankeschön :) hätte noch eine Frage. Könnte ich
> berechnen an welcher stelle x die kurve z.b. 5cm lang ist,
> wenn sie bei 0 startete, bzw:
> [mm]L=5=\integral_{0}^{b}{\wurzel{1+(f'(x))^{2}} dx}[/mm]
> ?

Ja klar, der Ansatz ist völlig richtig. Das Problem der Kurvenlänge führt halt relativ oft auf Integrale, für die es keine geschlossene Stammfunktion gibt.


Gruß, Diophant


Bezug
                                
Bezug
"der weg" einer funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Di 26.02.2013
Autor: bquadrat

Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]