www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungendgl 2 ode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - dgl 2 ode
dgl 2 ode < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dgl 2 ode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:55 So 05.12.2010
Autor: Michi_

hallo,

habe folgende dgl:

4x'' - 8x' + 3x  =  0    AWP x(2)=2; x'(2)=0

->

x'' - 2x' +3/4 x= 0

[mm] a_1_/_2 [/mm] = 1+- [mm] \bruch{1}{2} [/mm]

[mm] x_h=x_h_1+x_h_2 [/mm]

[mm] x_h= c_1*e^{1/2*t} [/mm] * [mm] c_2*e^{3/2*t} [/mm]

->

[mm] x_h(2)= [/mm] 2= [mm] c_1*e^1 [/mm] + [mm] c_2*e^3 [/mm]
x'h(2)= 0 [mm] =1/2*c_1*e^1 [/mm] + [mm] c_2*e^3 [/mm]


nach auflösen komme ich zB auf

[mm] c_1=3/e^1 [/mm]

a.) stimmt das vorgehen soweit
b.) wenn ich jetzt für die spezielle lsg [mm] c_1 [/mm] und [mm] c_2 [/mm] bestimmen will
dann bleibt mier immer eine e-funktion stehen... irgendwas mache
ich falsch wenn ichs mit dem musterergebnis vergleiche

        
Bezug
dgl 2 ode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:45 So 05.12.2010
Autor: Sax

Hi,

Zwei Fehler scheinen wohl nur Tippfehler zu sein, weil es danach richtig weitergeht :

> $ [mm] x_h= c_1\cdot{}e^{1/2\cdot{}t} [/mm] $ * $ [mm] c_2\cdot{}e^{3/2\cdot{}t} [/mm] $

muss + heißen

> x'h(2)= 0 $ [mm] =1/2\cdot{}c_1\cdot{}e^1 [/mm] $ + $ [mm] c_2\cdot{}e^3 [/mm] $

muss [mm] 1/2\cdot{}c_1\cdot{}e^1 [/mm] $ + $ [mm] 3/2\cdot{}c_2\cdot{}e^3 [/mm]  heißen.

> $ [mm] c_1=3/e^1 [/mm] $

ist richtig, jetzt noch [mm] c_2 [/mm]  berechnen.

> dann bleibt mier immer eine e-funktion stehen

nein, es bleibt eine Zahl stehen. [mm] e^1 [/mm] ist keine Funktion.

Gruß Sax.

Bezug
                
Bezug
dgl 2 ode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:55 So 05.12.2010
Autor: Michi_

hallo,

habe folgende dgl:

4x'' - 8x' + 3x  =  0    AWP x(2)=2; x'(2)=0

->

x'' - 2x' +3/4 x= 0

[mm] a_1_/_2 [/mm] = 1+- [mm] \bruch{1}{2} [/mm]

[mm] x_h=x_h_1+x_h_2 [/mm]

[mm] x_h= c_1*e^{1/2*t} [/mm] * [mm] c_2*e^{3/2*t} [/mm]

->

[mm] x_h(2)= [/mm] 2= [mm] c_1*e^1 [/mm] + [mm] c_2*e^3 [/mm]
x'h(2)= 0 [mm] =1/2*c_1*e^1 [/mm] + [mm] 2/3c_2*e^3 [/mm]


nach auflösen komme ich zB auf

[mm] c_1=3/e^1 [/mm]

a.) stimmt das vorgehen soweit
b.) wenn ich jetzt für die spezielle lsg [mm] c_1 [/mm] und [mm] c_2 [/mm] bestimmen will
dann bleibt mier immer eine e-funktion stehen... irgendwas mache
ich falsch wenn ichs mit dem musterergebnis vergleiche


hallo sax,
danke für die hinweise, war ein tippfehler ...

in meiner musterlösung steht
x(t)=5/2e^(t/2) - 1/2 e^(3t/2)

nun ist aber [mm] 3/e^1 \not= [/mm] 5/2

was stimmt da nicht??

danke

Bezug
                        
Bezug
dgl 2 ode: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 So 05.12.2010
Autor: Sax

Hi,

> in meiner musterlösung steht
> x(t)=5/2e^(t/2) - 1/2 e^(3t/2)

> nun ist aber $ [mm] 3/e^1 \not= [/mm] $ 5/2

> was stimmt da nicht??


und vor allen Dingen ist x(t)=5/2e^(t/2) - 1/2 e^(3t/2) nicht 2, wenn man für t die Zahl 2 einsetzt.
Also ist die Lösung falsch oder die Aufgabenstellung.

Gruß Sax.

Bezug
                                
Bezug
dgl 2 ode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 So 05.12.2010
Autor: Michi_

stimmt...
du hast absolut recht...
das musterergebnis muss falsch sein

es muss also gelten

x(h)= [mm] 3/e^1 [/mm] * e^(1/2t) - [mm] 1/e^3 [/mm] * e^(3/2t)

eingesetzt für den Zeitpunkt 2 ergibt 2....

danke nochmals ...
gruss michi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]