www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizendiagonalmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - diagonalmatrix
diagonalmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diagonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 So 03.10.2010
Autor: Der_Marder

Aufgabe
Zu folgender Matrix A ist eine Matrix S gesucht, für die gilt: S^-1 * A * S = M, wobei M eine Diagonalmatrix ist.

A= [mm] \pmat{ 1 & 1-2b \\ 1-2b & 1 } [/mm]

Nun wollte ich hier mit der Hauptachsen Transformation ansetzen. Ich habe es auch mit dem Orthonormalisierungsverfahren versucht, aber das funktioniert wohl nicht.

Also zuerst habe ich die Eigenwerte ermittelt und bin auf [mm] x_1=-2b [/mm] und auf [mm] x_2=2b-2 [/mm] gekommen.

Damit habe ich die Eigenvektoren ermittelt und bin auf [mm] v_1=(-1,1) [/mm] für [mm] x_1 [/mm] und auf [mm] v_2=(1,1) [/mm] für [mm] x_2 [/mm] gekommen. Das müsste alles stimmen, da bin ich mir noch relativ sicher.

Nun müsste ich die beiden noch normalisieren. Bei den normalisierten Eigenvektoren bin ich auf [mm] v_1'=\vektor{-\bruch{1}{\wurzel{4b}} \\ \bruch{1}{\wurzel{4b}}} [/mm] und [mm] v_2'=\vektor{\bruch{1}{\wurzel{4-4b}} \\ \bruch{1}{\wurzel{4-4b}}} [/mm]

Nun habe ich mehrere Fragen:
- warum muss ich die Eigenvektoren eigentlich nochmal normalisieren?
- Kann das Ergebnis so stimmen? Ich habe es spatenweise in eine Matrix eingetragen, aber ich komm nicht richtig bis zum Ergebnis bisher.

Danke schon mal!

        
Bezug
diagonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 So 03.10.2010
Autor: wieschoo


> Zu folgender Matrix A ist eine Matrix S gesucht, für die
> gilt: S^-1 * A * S = M, wobei M eine Diagonalmatrix ist.
>
> A= [mm]\pmat{ 1 & 1-2b \\ 1-2b & 1 }[/mm]
>  Nun wollte ich hier mit
> der Hauptachsen Transformation ansetzen. Ich habe es auch
> mit dem Orthonormalisierungsverfahren versucht, aber das
> funktioniert wohl nicht.
>
> Also zuerst habe ich die Eigenwerte ermittelt und bin auf
> [mm]x_1=-2b[/mm] und auf [mm]x_2=2b-2[/mm] gekommen.

Ich hab beim char. Polynom:
[mm]\lambda^2-2*\lambda+4*b-4*b^2[/mm]
und als Eigenwerte:
[mm]2b[/mm] und [mm]-2*b+2[/mm]

>
> Damit habe ich die Eigenvektoren ermittelt und bin auf
> [mm]v_1=(-1,1)[/mm] für [mm]x_1[/mm] und auf [mm]v_2=(1,1)[/mm] für [mm]x_2[/mm] gekommen.

[notok]

> Das müsste alles stimmen, da bin ich mir noch relativ
> sicher.
>  
> Nun müsste ich die beiden noch normalisieren. Bei den
> normalisierten Eigenvektoren bin ich auf
> [mm]v_1'=\vektor{-\bruch{1}{\wurzel{4b}} \\ \bruch{1}{\wurzel{4b}}}[/mm]
> und [mm]v_2'=\vektor{\bruch{1}{\wurzel{4-4b}} \\ \bruch{1}{\wurzel{4-4b}}}[/mm]
>  
> Nun habe ich mehrere Fragen:
>  - warum muss ich die Eigenvektoren eigentlich nochmal
> normalisieren?

Für das Diagonalisieren bräuchst du die EV nicht normieren.

>  - Kann das Ergebnis so stimmen? Ich habe es spatenweise in
> eine Matrix eingetragen, aber ich komm nicht richtig bis
> zum Ergebnis bisher.

Siehe Eigenwerte:
Zur Probe ich komme auf:
[mm]\left( \begin {array}{cc} 1/2&-1/2\\ 1/2&1/2 \end {array} \right) * \left( \begin {array}{cc} 1&1-2\,b\\ 1-2\,b&1 \end {array} \right) * \left( \begin {array}{cc} 1&1\\ -1&1\end {array} \right) = \left( \begin {array}{cc} 2\,b&0\\ 0&-2\,b+2 \end {array} \right) [/mm]

>  
> Danke schon mal!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]